i am solving a mathematical problem and i can't continue do to the error.
I tried all constant with sin^2(x) yet its the same.
clear
clc
t = 1:0.5:10;
theta = linspace(0,pi,19);
x = 2*sin(theta)
y = sin^2*(theta)*(t/4)
Error using sin
Not enough input arguments.
Error in lab2t114 (line 9)
y = sin^2*(theta)*(t/4)
sin is a function so it should be called as sin(value) which in this case is sin(theta) It may help to consider writing everything in intermediate steps:
temp = sin(theta);
y = temp.^2 ...
Once this is done you can always insert lines from previous calculations into the next line, inserting parentheses to ensure order of operations doesn't mess things up. Note in this case you don't really need the parentheses.
y = (sin(theta)).^2;
Finally, Matlab has matrix wise and element wise operations. The element wise operations start with a period '.' In Matlab you can look at, for example, help .* (element wise multiplication) and help * matrix wise calculation. For a scalar, like 2 in your example, this distinction doesn't matter. However for calculating y you need element-wise operations since theta and t are vectors (and in this case you are not looking to do matrix multiplication - I think ...)
t = 1:0.5:10;
theta = linspace(0,pi,19);
x = 2*sin(theta) %times scalar so no .* needed
sin_theta = sin(theta);
sin_theta_squared = sin_theta.^2; %element wise squaring needed since sin_theta is a vector
t_4 = t/4; %divide by scalar, this doesn't need a period
y = sin_theta_squared.*t_4; %element wise multiplication since both variables are arrays
OR
y = sin(theta).^2.*(t/4);
Also note these intermediate variables are largely for learning purposes. It is best not to write actual code like this since, in this case, the last line is a lot cleaner.
EDIT: Brief note, if you fix the sin(theta) error but not the .^ or .* errors, you would get some error like "Error using * Inner matrix dimensions must agree." - this is generally an indication that you forgot to use the element-wise operators
Related
So after beating my head against the wall for a few hours, I looked online for a solution to my problem, and it worked great. I just want to know what caused the issue with the way I was originally going about it.
here are some more details. The input is a 20x20px image from the MNIST datset, and there are 5000 samples, so X, or A1 is 5000x400. There are 25 nodes in the single hidden layer. The output is a one hot vector of 0-9 digits. y (not Y, which is the one hot encoding of y) is a 5000x1 vector with the value of 1-10.
Here was my original code for the cost function:
Y = zeros(m, num_labels);
for i = 1:m
Y(i, y(i)) = 1;
endfor
H = sigmoid(Theta2*[ones(1,m);sigmoid(Theta1*[ones(m, 1) X]'))
J = (1/m) * sum(sum((-Y*log(H]))' - (1-Y)*log(1-H]))')))
But then I found this:
A1 = [ones(m, 1) X];
Z2 = A1 * Theta1';
A2 = [ones(size(Z2, 1), 1) sigmoid(Z2)];
Z3 = A2*Theta2';
H = A3 = sigmoid(Z3);
J = (1/m)*sum(sum((-Y).*log(H) - (1-Y).*log(1-H), 2));
I see that this may be slightly cleaner, but what functionally causes my original code to get 304.88 and the other to get ~ 0.25? Is it the element wise multiplication?
FYI, this is the same problem as this question if you need the formal equation written out.
Thanks for any help I can get! I really want to understand where I'm going wrong
Transfer from the comments:
With a quick look, in J = (1/m) * sum(sum((-Y*log(H]))' - (1-Y)*log(1-H]))'))) there is definetely something going on with the parenthesis, but probably on how you pasted it here, not with the original code as this would throw an error when you run it. If I understand correctly and Y, H are matrices, then in your 1st version Y*log(H) is matrix multiplication while in the 2nd version Y.*log(H) is an entrywise multiplication (not matrix-multiplication, just c(i,j)=a(i,j)*b(i,j) ).
Update 1:
In regards to your question in the comment.
From the first screenshot, you represent each value yk(i) in the entry Y(i,k) of the Y matrix and each value h(x^(i))k as H(i,k). So basically, for each i,k you want to compute Y(i,k) log(H(i,k)) + (1-Y(i,k)) log(1-H(i,k)). You can do it for all the values together and store the result in matrix C. Then C = Y.*log(H) + (1-Y).*log(1-H) and each C(i,k) has the above mentioned value. This is an operation .* because you want to do the operation for each element (i,k) of each matrix (in contrast to multiplying the matrices which is totally different). Afterwards, to get the sum of all the values inside the 2D dimensional matrix C, you use the octave function sum twice: sum(sum(C)) to sum both columnwise and row-wise (or as # Irreducible suggested, just sum(C(:))).
Note there may be other errors as well.
Can anybody help me with this assignment please?
I am new to matlab, and passing this year depends on this assignment, i don't have much time to explore matlab and i already wasted alot of time trying to do this assignment in my way.
I have already wrote the equations on the paper, but transfering the equations into matlab codes is really hard for me.
All i have for now is:
syms h
l = (0.75-h.^2)/(3*sqrt((5*h.^2)/4)); %h is h_max
V_default = (h.^2/2)*l;
dv = diff(V_default); %it's max. when the derivative is max.
h1 = solve( dv ==0);
h_max = (h1>0);
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
V_max = ((h_max.^2)./(2.*l_max));
but it keep give me error "Error using ./
Matrix dimensions must agree.
Error in triangle (line 9)
V_max = ((h_max.^2)./(2.*l_max)); "
Not really helping with the assignment here, but with the Matlab syntax. In the following line:
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
you're using / that is a matrix divide. You might want to use ./ which will divide the terms element by element. If I do this
l_max = (0.75-h_max.^2) ./ (3*sqrt((h_max/2).^2+(h_max.^2)));
then your code doesn't return any error. But I have no idea if it's the correct solution of your assignment, I'll leave that to you!
In line 5, the result h1 is a vector of two values but the variable itself remains symbolic, from the Symbolic Math Toolbox. MATLAB treats such variables slightly different. For that reason, the line h_max = (h1>0) doesn't really do what you expect. As I think from this point, you are interested in one value h_max, I would convert h1 to a regular MATLAB variable and change your code to the following:
h1 = double(solve( dv ==0)); % converts symbolic to regular vectors
h_max = h1(h1>0); % filters out all negative and zero values
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
V_max = ((h_max.^2)./(2.*l_max));
EDIT.
If you still have error, it means solve( ...) returns more than 1 positive values. In this case, as suggested, use dotted operations, such as ./ but the results in l_max and V_max will not be a single value but vectors of the same size as h_max. Which means you don't have one max Volume.
I want to compute using MATLAB all the integers x such that x^2-2x<2000, but I am having problems in the displaying part because when I run my code MATLAB seems not to finish. My code is as follows:
x=100;
while x^2+2x-2000>=10^-6
x=x-20;
if x^2+2x-2000<10^-6
disp(x)
end
end
I think the wrong part is when I type disp(x) in the while loop, but I don't know how to fix it.
NOTE: I am using the 10^-6 to avoid rounding errors
Can someone help me to fix this code please?
Computationally, finding all integers that satisfy this condition will need some help from a quick insight into this problem. Otherwise, you'll have to test all the integers, which is impossible since there is infinite number of integers. Analytically, finding all the integers that satisfy the condition x^2-2x < 2000 means finding the integers that lies within the intersection of the curve x^2 - 2x and y = 2000.
Let's first take a look at the problem by plotting it:
x = -500:.1:500;
y = x.^2 - 2*x;
plot(x, y, 'color', 'g')
hold on
line([-200 200], [2000 2000], 'color', 'r')
You can easily see that you can limit your search to at least between -100 and 100. You can store the value in an array
results = [] % Declare empty array first and append value later.
for x = -100:100
if x^2 - 2*x < 2000
disp(x)
results = [results,x]; % Using a bracket to append value to the array.
end
end
And a faster way to get results using logical indexing.
x = -100:100
results = x(x.^2 - 2*x<2000)
In the above code, x.^2 - 2*x < 2000 generates a logical array that has the same size as x. Each element stores the logical value that comes from the evaluating each element in x with the expression. You then use this as a mask to pick out only elements in x that satisfy this condition.
If you add in some parentheses and use the correct syntax for 2*x, it works.
x=100;
while (x^2+2*x-2000)>= (10^-6)
x=(x-20);
if (x^2+2*x-2000) <10^-6
disp(x)
end
end
Building upon #User3667217's solution, you can also vectorise this:
x = -100:100;
y = x.^2-2*x;
tmp = y<2000;
results = y(tmp);
this will give you a speed up over the for-loop solution.
So I'm just trying to plot 4 different subplots with variations of the increments. So first would be dx=5, then dx=1, dx=0.1 and dx=0.01 from 0<=x<=20.
I tried to this:
%for dx = 5
x = 0:5:20;
fx = 2*pi*x *sin(x^2)
plot(x,fx)
however I get the error inner matrix elements must agree. Then I tried to do this,
x = 0:5:20
fx = (2*pi).*x.*sin(x.^2)
plot(x,fx)
I get a figure, but I'm not entirely sure if this would be the same as what I am trying to do initially. Is this correct?
The initial error arose since two vectors with the same shape cannot be squared (x^2) nor multiplied (x * sin(x^2)). The addition of the . before the * and ^ operators is correct here since that will perform the operation on the individual elements of the vectors. So yes, this is correct.
Also, bit of a more advanced feature, you can use an anonymous function to aid in the expressions:
fx = #(x) 2*pi.*x.*sin(x.^2); % function of x
x = 0:5:20;
plot(x,fx(x));
hold('on');
x = 0:1:20;
plot(x,fx(x));
hold('off');
having a problem with my "new love", matlab: I wrote a function to calculate an integral using the trapz-method: `
function [L]=bogenlaenge_innen(schwingungen)
R = 1500; %Ablegeradius
OA = 1; %Amplitude
S = schwingungen; %Schwingungszahl
B = 3.175; %Tapebreite
phi = 0:2.*pi./10000:2.*pi;
BL = sqrt((R-B).^2+2.*(R-B).*OA.*sin(S.*phi)+OA.^2.*(sin(S.*phi)).^2+OA.^2.*S.^2.*(cos(S.*phi)).^2);
L = trapz(phi,BL)`
this works fine when i start it with one specific number out of the command-window. Now I want to plot the values of "L" for several S.
I did the following in a new *.m-file:
W = (0:1:1500);
T = bogenlaenge_innen(W);
plot(W,T)
And there it is:
Error using .*
Matrix dimensions must agree.
What is wrong? Is it just a dot somewhere? I am using matlab for the second day now, so please be patient.... ;) Thank you so much in advance!
PS: just ignore the german part of the code, it does not really matter :)
In your code, the arrays S and phi in the expression sin(S.*phi) should have same size or one of them should be a constant in order the code works
The error is most likely because you have made it so that the number of elements in schwingungen, i.e. W in your code, must be equal to the number of elements in phi. Since size(W) gives you a different result from size(0:2.*pi./10000:2.*pi), you get the error.
The way .* works is that is multiplies each corresponding elements of two matrices provided that they either have the same dimensions or that one of them is a scalar. So your code will work when schwingungen is a scalar, but not when it's a vector as chances are it has a different number of elements from the way you hard coded phi.
The simplest course of action (not necessarily the most Matlabesque though) for you is to loop through the different values of S:
W = (0:1:1500);
T = zeros(size(W); %Preallocate for speed)
for ii = 1:length(W)
T(ii) = bogenlaenge_innen(W(ii));
end
plot(W,T)
In your function you define phi as a vector of 10001 elements.
In this same function you do S.*phi, so if S is not the same length as phi, you will get the "dimensions must agree" error.
In your call to the function you are doing it with a vector of length 1501, so there is your error.
Regards