Related
I'm trying to implement Divide and Conquer SVD of an upper bidiagonal matrix B, but my code is not working. The error is:
"Unable to perform assignment because the size of the left side is
3-by-3 and the size of the right side is 2-by-2.
V_bar(1:k,1:k) = V1;"
Can somebody help me fix it? Thanks.
function [U,S,V] = DivideConquer_SVD(B)
[m,n] = size(B);
k = floor(m/2);
if k == 0
U = 1;
V = 1;
S = B;
return;
else
% Divide the input matrix
alpha = B(k,k);
beta = B(k,k+1);
e1 = zeros(m,1);
e2 = zeros(m,1);
e1(k) = 1;
e2(k+1) = 1;
B1 = B(1:k-1,1:k);
B2 = B(k+1:m,k+1:m);
%recursive computations
[U1,S1,V1] = DivideConquer_SVD(B1);
[U2,S2,V2] = DivideConquer_SVD(B2);
U_bar = zeros(m);
U_bar(1:k-1,1:k-1) = U1;
U_bar(k,k) = 1;
U_bar((k+1):m,(k+1):m) = U2;
D = zeros(m);
D(1:k-1,1:k) = S1;
D((k+1):m,(k+1):m) = S2;
V_bar = zeros(m);
V_bar(1:k,1:k) = V1;
V_bar((k+1):m,(k+1):m) = V2;
u = alpha*e1'*V_bar + beta*e2'*V_bar;
u = u';
D_tilde = D*D + u*u';
% compute eigenvalues and eigenvectors of D^2+uu'
[L1,Q1] = eig(D_tilde);
eigs = diag(L1);
S = zeros(m,n)
S(1:(m+1):end) = eigs
U_tilde = Q1;
V_tilde = Q1;
%Compute eigenvectors of the original input matrix T
U = U_bar*U_tilde;
V = V_bar*V_tilde;
return;
end
With limited mathematical knowledge, you need to help me a bit more -- as I cannot judge if the approach is correct in a mathematical way (with no theory given;) ). Anyway, I couldn't even reproduce the error e.g with this matrix, which The MathWorks use to illustrate their LU matrix factorization
A = [10 -7 0
-3 2 6
5 -1 5];
So I tried to structure your code a bit and gave some hints. Extend this to make your code clearer for those people (like me) who are not too familiar with matrix decomposition.
function [U,S,V] = DivideConquer_SVD(B)
% m x n matrix
[m,n] = size(B);
k = floor(m/2);
if k == 0
disp('if') % for debugging
U = 1;
V = 1;
S = B;
% return; % net necessary as you don't do anything afterwards anyway
else
disp('else') % for debugging
% Divide the input matrix
alpha = B(k,k); % element on diagonal
beta = B(k,k+1); % element on off-diagonal
e1 = zeros(m,1);
e2 = zeros(m,1);
e1(k) = 1;
e2(k+1) = 1;
% divide matrix
B1 = B(1:k-1,1:k); % upper left quadrant
B2 = B(k+1:m,k+1:m); % lower right quadrant
% recusrsive function call
[U1,S1,V1] = DivideConquer_SVD(B1);
[U2,S2,V2] = DivideConquer_SVD(B2);
U_bar = zeros(m);
U_bar(1:k-1,1:k-1) = U1;
U_bar(k,k) = 1;
U_bar((k+1):m,(k+1):m) = U2;
D = zeros(m);
D(1:k-1,1:k) = S1;
D((k+1):m,(k+1):m) = S2;
V_bar = zeros(m);
V_bar(1:k,1:k) = V1;
V_bar((k+1):m,(k+1):m) = V2;
u = (alpha*e1.'*V_bar + beta*e2.'*V_bar).'; % (little show-off tip: '
% is the complex transpose operator; .' is the "normal" transpose
% operator. It's good practice to distinguish between them but there
% is no difference for real matrices anyway)
D_tilde = D*D + u*u.';
% compute eigenvalues and eigenvectors of D^2+uu'
[L1,Q1] = eig(D_tilde);
eigs = diag(L1);
S = zeros(m,n);
S(1:(m+1):end) = eigs;
U_tilde = Q1;
V_tilde = Q1;
% Compute eigenvectors of the original input matrix T
U = U_bar*U_tilde;
V = V_bar*V_tilde;
% return; % net necessary as you don't do anything afterwards anyway
end % for
end % function
I have a 3D volume and a 2D image and an approximate mapping (affine transformation with no skwewing, known scaling, rotation and translation approximately known and need fitting) between the two. Because there is an error in this mapping and I would like to further register the 2D image to the 3D volume. I have not written code for registration purposes before, but because I can't find any programs or code to solve this I would like to try and do this. I believe the standard for registration is to optimize mutual information. I think this would also be suitable here, because the intensities are not equal between the two images. So I think I should make a function for the transformation, a function for the mutual information and a function for optimization.
I did find some Matlab code on a mathworks thread from two years ago, based on an article. The OP reports that she managed to get the code to work, but I'm not getting how she did that exactly. Also in the IP package for matlab there is an implementation, but I dont have that package and there does not seem to be an equivalent for octave. SPM is a program that uses matlab and has registration implemented, but does not cope with 2d to 3d registration. On the file exchange there is a brute force method that registers two 2D images using mutual information.
What she does is pass a multi planar reconstruction function and an similarity/error function into a minimization algorithm. But the details I don't quite understand. Maybe it would be better to start fresh:
load mri; volume = squeeze(D);
phi = 3; theta = 2; psi = 5; %some small angles
tx = 1; ty = 1; tz = 1; % some small translation
dx = 0.25, dy = 0.25, dz = 2; %different scales
t = [tx; ty; tz];
r = [phi, theta, psi]; r = r*(pi/180);
dims = size(volume);
p0 = [round(dims(1)/2);round(dims(2)/2);round(dims(3)/2)]; %image center
S = eye(4); S(1,1) = dx; S(2,2) = dy; S(3,3) = dz;
Rx=[1 0 0 0;
0 cos(r(1)) sin(r(1)) 0;
0 -sin(r(1)) cos(r(1)) 0;
0 0 0 1];
Ry=[cos(r(2)) 0 -sin(r(2)) 0;
0 1 0 0;
sin(r(2)) 0 cos(r(2)) 0;
0 0 0 1];
Rz=[cos(r(3)) sin(r(3)) 0 0;
-sin(r(3)) cos(r(3)) 0 0;
0 0 1 0;
0 0 0 1];
R = S*Rz*Ry*Rx;
%make affine matrix to rotate about center of image
T1 = ( eye(3)-R(1:3,1:3) ) * p0(1:3);
T = T1 + t; %add translation
A = R;
A(1:3,4) = T;
Rold2new = A;
Rnew2old = inv(Rold2new);
%the transformation
[xx yy zz] = meshgrid(1:dims(1),1:dims(2),1:1);
coordinates_axes_new = [xx(:)';yy(:)';zz(:)'; ones(size(zz(:)))'];
coordinates_axes_old = Rnew2old*coordinates_axes_new;
Xcoordinates = reshape(coordinates_axes_old(1,:), dims(1), dims(2), dims(3));
Ycoordinates = reshape(coordinates_axes_old(2,:), dims(1), dims(2), dims(3));
Zcoordinates = reshape(coordinates_axes_old(3,:), dims(1), dims(2), dims(3));
%interpolation/reslicing
method = 'cubic';
slice= interp3(volume, Xcoordinates, Ycoordinates, Zcoordinates, method);
%so now I have my slice for which I would like to find the correct position
% first guess for A
A0 = eye(4); A0(1:3,4) = T1; A0(1,1) = dx; A0(2,2) = dy; A0(3,3) = dz;
% this is pretty close to A
% now how would I fit the slice to the volume by changing A0 and examining some similarity measure?
% probably maximize mutual information?
% http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation/content//mi/mutualinfo.m
Ok I was hoping for someone else's approach, that would probably have been better than mine as I have never done any optimization or registration before. So I waited for Knedlsepps bounty to almost finish. But I do have some code thats working now. It will find a local optimum so the initial guess must be good. I wrote some functions myself, took some functions from the file exchange as is and I extensively edited some other functions from the file exchange. Now that I put all the code together to work as an example here, the rotations are off, will try and correct that. Im not sure where the difference in code is between the example and my original code, must have made a typo in replacing some variables and data loading scheme.
What I do is I take the starting affine transformation matrix, decompose it to an orthogonal matrix and an upper triangular matrix. I then assume the orthogonal matrix is my rotation matrix so I calculate the euler angles from that. I directly take the translation from the affine matrix and as stated in the problem I assume I know the scaling matrix and there is no shearing. So then I have all degrees of freedom for the affine transformation, which my optimisation function changes and constructs a new affine matrix from, applies it to the volume and calculates the mutual information. The matlab optimisation function patternsearch then minimises 1-MI/MI_max.
What I noticed when using it on my real data which are multimodal brain images is that it works much better on brain extracted images, so with the skull and tissue outside of the skull removed.
%data
load mri; volume = double(squeeze(D));
%transformation parameters
phi = 3; theta = 1; psi = 5; %some small angles
tx = 1; ty = 1; tz = 3; % some small translation
dx = 0.25; dy = 0.25; dz = 2; %different scales
t = [tx; ty; tz];
r = [phi, theta, psi]; r = r*(pi/180);
%image center and size
dims = size(volume);
p0 = [round(dims(1)/2);round(dims(2)/2);round(dims(3)/2)];
%slice coordinate ranges
range_x = 1:dims(1)/dx;
range_y = 1:dims(2)/dy;
range_z = 1;
%rotation
R = dofaffine([0;0;0], r, [1,1,1]);
T1 = ( eye(3)-R(1:3,1:3) ) * p0(1:3); %rotate about p0
%scaling
S = eye(4); S(1,1) = dx; S(2,2) = dy; S(3,3) = dz;
%translation
T = [[eye(3), T1 + t]; [0 0 0 1]];
%affine
A = T*R*S;
% first guess for A
r00 = [1,1,1]*pi/180;
R00 = dofaffine([0;0;0], r00, [1 1 1]);
t00 = T1 + t + ( eye(3) - R00(1:3,1:3) ) * p0;
A0 = dofaffine( t00, r00, [dx, dy, dz] );
[ t0, r0, s0 ] = dofaffine( A0 );
x0 = [ t0.', r0, s0 ];
%the transformation
slice = affine3d(volume, A, range_x, range_y, range_z, 'cubic');
guess = affine3d(volume, A0, range_x, range_y, range_z, 'cubic');
%initialisation
Dt = [1; 1; 1];
Dr = [2 2 2].*pi/180;
Ds = [0 0 0];
Dx = [Dt', Dr, Ds];
%limits
LB = x0-Dx;
UB = x0+Dx;
%other inputs
ref_levels = length(unique(slice));
Qref = imquantize(slice, ref_levels);
MI_max = MI_GG(Qref, Qref);
%patternsearch options
options = psoptimset('InitialMeshSize',0.03,'MaxIter',20,'TolCon',1e-5,'TolMesh',5e-5,'TolX',1e-6,'PlotFcns',{#psplotbestf,#psplotbestx});
%optimise
[x2, MI_norm_neg, exitflag_len] = patternsearch(#(x) AffRegOptFunc(x, slice, volume, MI_max, x0), x0,[],[],[],[],LB(:),UB(:),options);
%check
p0 = [round(size(volume)/2).'];
R0 = dofaffine([0;0;0], x2(4:6)-x0(4:6), [1 1 1]);
t1 = ( eye(3) - R0(1:3,1:3) ) * p0;
A2 = dofaffine( x2(1:3).'+t1, x2(4:6), x2(7:9) ) ;
fitted = affine3d(volume, A2, range_x, range_y, range_z, 'cubic');
overlay1 = imfuse(slice, guess);
overlay2 = imfuse(slice, fitted);
figure(101);
ax(1) = subplot(1,2,1); imshow(overlay1, []); title('pre-reg')
ax(2) = subplot(1,2,2); imshow(overlay2, []); title('post-reg');
linkaxes(ax);
function normed_score = AffRegOptFunc( x, ref_im, reg_im, MI_max, x0 )
t = x(1:3).';
r = x(4:6);
s = x(7:9);
rangx = 1:size(ref_im,1);
rangy = 1:size(ref_im,2);
rangz = 1:size(ref_im,3);
ref_levels = length(unique(ref_im));
reg_levels = length(unique(reg_im));
t0 = x0(1:3).';
r0 = x0(4:6);
s0 = x0(7:9);
p0 = [round(size(reg_im)/2).'];
R = dofaffine([0;0;0], r-r0, [1 1 1]);
t1 = ( eye(3) - R(1:3,1:3) ) * p0;
t = t + t1;
Ap = dofaffine( t, r, s );
reg_im_t = affine3d(reg_im, A, rangx, rangy, rangz, 'cubic');
Qref = imquantize(ref_im, ref_levels);
Qreg = imquantize(reg_im_t, reg_levels);
MI = MI_GG(Qref, Qreg);
normed_score = 1-MI/MI_max;
end
function [ varargout ] = dofaffine( varargin )
% [ t, r, s ] = dofaffine( A )
% [ A ] = dofaffine( t, r, s )
if nargin == 1
%affine to degrees of freedom (no shear)
A = varargin{1};
[T, R, S] = decompaffine(A);
r = GetEulerAngles(R(1:3,1:3));
s = [S(1,1), S(2,2), S(3,3)];
t = T(1:3,4);
varargout{1} = t;
varargout{2} = r;
varargout{3} = s;
elseif nargin == 3
%degrees of freedom to affine (no shear)
t = varargin{1};
r = varargin{2};
s = varargin{3};
R = GetEulerAngles(r); R(4,4) = 1;
S(1,1) = s(1); S(2,2) = s(2); S(3,3) = s(3); S(4,4) = 1;
T = eye(4); T(1,4) = t(1); T(2,4) = t(2); T(3,4) = t(3);
A = T*R*S;
varargout{1} = A;
else
error('incorrect number of input arguments');
end
end
function [ T, R, S ] = decompaffine( A )
%I assume A = T * R * S
T = eye(4);
R = eye(4);
S = eye(4);
%decompose in orthogonal matrix q and upper triangular matrix r
%I assume q is a rotation matrix and r is a scale and shear matrix
%matlab 2014 can force real solution
[q r] = qr(A(1:3,1:3));
R(1:3,1:3) = q;
S(1:3,1:3) = r;
% A*S^-1*R^-1 = T*R*S*S^-1*R^-1 = T*R*I*R^-1 = T*R*R^-1 = T*I = T
T = A*inv(S)*inv(R);
t = T(1:3,4);
T = [eye(4) + [[0 0 0;0 0 0;0 0 0;0 0 0],[t;0]]];
end
function [varargout]= GetEulerAngles(R)
assert(length(R)==3)
dims = size(R);
if min(dims)==1
rx = R(1); ry = R(2); rz = R(3);
R = [[ cos(ry)*cos(rz), -cos(ry)*sin(rz), sin(ry)];...
[ cos(rx)*sin(rz) + cos(rz)*sin(rx)*sin(ry), cos(rx)*cos(rz) - sin(rx)*sin(ry)*sin(rz), -cos(ry)*sin(rx)];...
[ sin(rx)*sin(rz) - cos(rx)*cos(rz)*sin(ry), cos(rz)*sin(rx) + cos(rx)*sin(ry)*sin(rz), cos(rx)*cos(ry)]];
varargout{1} = R;
else
ry=asin(R(1,3));
rz=acos(R(1,1)/cos(ry));
rx=acos(R(3,3)/cos(ry));
if nargout > 1 && nargout < 4
varargout{1} = rx;
varargout{2} = ry;
varargout{3} = rz;
elseif nargout == 1
varargout{1} = [rx ry rz];
else
error('wrong number of output arguments');
end
end
end
This is a follow-up question to How to append an element to an array in MATLAB? That question addressed how to append an element to an array. Two approaches are discussed there:
A = [A elem] % for a row array
A = [A; elem] % for a column array
and
A(end+1) = elem;
The second approach has the obvious advantage of being compatible with both row and column arrays.
However, this question is: which of the two approaches is fastest? My intuition tells me that the second one is, but I'd like some evidence for or against that. Any idea?
The second approach (A(end+1) = elem) is faster
According to the benchmarks below (run with the timeit benchmarking function from File Exchange), the second approach (A(end+1) = elem) is faster and should therefore be preferred.
Interestingly, though, the performance gap between the two approaches is much narrower in older versions of MATLAB than it is in more recent versions.
R2008a
R2013a
Benchmark code
function benchmark
n = logspace(2, 5, 40);
% n = logspace(2, 4, 40);
tf = zeros(size(n));
tg = tf;
for k = 1 : numel(n)
x = rand(round(n(k)), 1);
f = #() append(x);
tf(k) = timeit(f);
g = #() addtoend(x);
tg(k) = timeit(g);
end
figure
hold on
plot(n, tf, 'bo')
plot(n, tg, 'ro')
hold off
xlabel('input size')
ylabel('time (s)')
leg = legend('y = [y, x(k)]', 'y(end + 1) = x(k)');
set(leg, 'Location', 'NorthWest');
end
% Approach 1: y = [y, x(k)];
function y = append(x)
y = [];
for k = 1 : numel(x);
y = [y, x(k)];
end
end
% Approach 2: y(end + 1) = x(k);
function y = addtoend(x)
y = [];
for k = 1 : numel(x);
y(end + 1) = x(k);
end
end
How about this?
function somescript
RStime = timeit(#RowSlow)
CStime = timeit(#ColSlow)
RFtime = timeit(#RowFast)
CFtime = timeit(#ColFast)
function RowSlow
rng(1)
A = zeros(1,2);
for i = 1:1e5
A = [A rand(1,1)];
end
end
function ColSlow
rng(1)
A = zeros(2,1);
for i = 1:1e5
A = [A; rand(1,1)];
end
end
function RowFast
rng(1)
A = zeros(1,2);
for i = 1:1e5
A(end+1) = rand(1,1);
end
end
function ColFast
rng(1)
A = zeros(2,1);
for i = 1:1e5
A(end+1) = rand(1,1);
end
end
end
For my machine, this yields the following timings:
RStime =
30.4064
CStime =
29.1075
RFtime =
0.3318
CFtime =
0.3351
The orientation of the vector does not seem to matter that much, but the second approach is about a factor 100 faster on my machine.
In addition to the fast growing method pointing out above (i.e., A(k+1)), you can also get a speed increase from increasing the array size by some multiple, so that allocations become less as the size increases.
On my laptop using R2014b, a conditional doubling of size results in about a factor of 6 speed increase:
>> SO
GATime =
0.0288
DWNTime =
0.0048
In a real application, the size of A would needed to be limited to the needed size or the unfilled results filtered out in some way.
The Code for the SO function is below. I note that I switched to cos(k) since, for some unknown reason, there is a large difference in performance between rand() and rand(1,1) on my machine. But I don't think this affects the outcome too much.
function [] = SO()
GATime = timeit(#GrowAlways)
DWNTime = timeit(#DoubleWhenNeeded)
end
function [] = DoubleWhenNeeded()
A = 0;
sizeA = 1;
for k = 1:1E5
if ((k+1) > sizeA)
A(2*sizeA) = 0;
sizeA = 2*sizeA;
end
A(k+1) = cos(k);
end
end
function [] = GrowAlways()
A = 0;
for k = 1:1E5
A(k+1) = cos(k);
end
end
I'm trying to produce some computer generated holograms by using MATLAB. I used equally spaced mesh grid to initialize the spatial grid, and I got the following image
This pattern is sort of what I need except the center region. The fringe should be sharp but blurred. I think it might be the problem of the mesh grid. I tried generate a grid in polar coordinates and the map it into Cartesian coordinates by using MATLAB's pol2cart function. Unfortunately, it doesn't work as well. One may suggest that using fine grids. It doesn't work too. I think if I can generate a spiral mesh grid, perhaps the problem is solvable. In addition, the number of the spiral arms could, in general, be arbitrary, could anyone give me a hint on this?
I've attached the code (My final projects are not exactly the same, but it has a similar problem).
clc; clear all; close all;
%% initialization
tic
lambda = 1.55e-6;
k0 = 2*pi/lambda;
c0 = 3e8;
eta0 = 377;
scale = 0.25e-6;
NELEMENTS = 1600;
GoldenRatio = (1+sqrt(5))/2;
g = 2*pi*(1-1/GoldenRatio);
pntsrc = zeros(NELEMENTS, 3);
phisrc = zeros(NELEMENTS, 1);
for idxe = 1:NELEMENTS
pntsrc(idxe, :) = scale*sqrt(idxe)*[cos(idxe*g), sin(idxe*g), 0];
phisrc(idxe) = angle(-sin(idxe*g)+1i*cos(idxe*g));
end
phisrc = 3*phisrc/2; % 3 arms (topological charge ell=3)
%% post processing
sigma = 1;
polfilter = [0, 0, 1i*sigma; 0, 0, -1; -1i*sigma, 1, 0]; % cp filter
xboundl = -100e-6; xboundu = 100e-6;
yboundl = -100e-6; yboundu = 100e-6;
xf = linspace(xboundl, xboundu, 100);
yf = linspace(yboundl, yboundu, 100);
zf = -400e-6;
[pntobsx, pntobsy] = meshgrid(xf, yf);
% how to generate a right mesh grid such that we can generate a decent result?
pntobs = [pntobsx(:), pntobsy(:), zf*ones(size(pntobsx(:)))];
% arbitrary mesh may result in "wrong" results
NPNTOBS = size(pntobs, 1);
nxp = length(xf);
nyp = length(yf);
%% observation
Eobs = zeros(NPNTOBS, 3);
matlabpool open local 12
parfor nobs = 1:NPNTOBS
rp = pntobs(nobs, :);
Erad = [0; 0; 0];
for idx = 1:NELEMENTS
rs = pntsrc(idx, :);
p = exp(sigma*1i*2*phisrc(idx))*[1 -sigma*1i 0]/2; % simplified here
u = rp - rs;
r = sqrt(u(1)^2+u(2)^2+u(3)^2); %norm(u);
u = u/r; % unit vector
ut = [u(2)*p(3)-u(3)*p(2),...
u(3)*p(1)-u(1)*p(3), ...
u(1)*p(2)-u(2)*p(1)]; % cross product: u cross p
Erad = Erad + ... % u cross p cross u, do not use the built-in func
c0*k0^2/4/pi*exp(1i*k0*r)/r*eta0*...
[ut(2)*u(3)-ut(3)*u(2);...
ut(3)*u(1)-ut(1)*u(3); ...
ut(1)*u(2)-ut(2)*u(1)];
end
Eobs(nobs, :) = Erad; % filter neglected here
end
matlabpool close
Eobs = Eobs/max(max(sum(abs(Eobs), 2))); % normailized
%% source, gaussian beam
E0 = 1;
w0 = 80e-6;
theta = 0; % may be titled
RotateX = [1, 0, 0; ...
0, cosd(theta), -sind(theta); ...
0, sind(theta), cosd(theta)];
Esrc = zeros(NPNTOBS, 3);
for nobs = 1:NPNTOBS
rp = RotateX*[pntobs(nobs, 1:2).'; 0];
z = rp(3);
r = sqrt(sum(abs(rp(1:2)).^2));
zR = pi*w0^2/lambda;
wz = w0*sqrt(1+z^2/zR^2);
Rz = z^2+zR^2;
zetaz = atan(z/zR);
gaussian = E0*w0/wz*exp(-r^2/wz^2-1i*k0*z-1i*k0*0*r^2/Rz/2+1i*zetaz);% ...
Esrc(nobs, :) = (polfilter*gaussian*[1; -1i; 0]).'/sqrt(2)/2;
end
Esrc = [Esrc(:, 2), Esrc(:, 3), Esrc(:, 1)];
Esrc = Esrc/max(max(sum(abs(Esrc), 2))); % normailized
toc
%% visualization
fringe = Eobs + Esrc; % I'll have a different formula in my code
normEsrc = reshape(sum(abs(Esrc).^2, 2), [nyp nxp]);
normEobs = reshape(sum(abs(Eobs).^2, 2), [nyp nxp]);
normFringe = reshape(sum(abs(fringe).^2, 2), [nyp nxp]);
close all;
xf0 = linspace(xboundl, xboundu, 500);
yf0 = linspace(yboundl, yboundu, 500);
[xfi, yfi] = meshgrid(xf0, yf0);
data = interp2(xf, yf, normFringe, xfi, yfi);
figure; surf(xfi, yfi, data,'edgecolor','none');
% tri = delaunay(xfi, yfi); trisurf(tri, xfi, yfi, data, 'edgecolor','none');
xlim([xboundl, xboundu])
ylim([yboundl, yboundu])
% colorbar
view(0,90)
colormap(hot)
axis equal
axis off
title('fringe thereo. ', ...
'fontsize', 18)
I didn't read your code because it is too long to do such a simple thing. I wrote mine and here is the result:
the code is
%spiral.m
function val = spiral(x,y)
r = sqrt( x*x + y*y);
a = atan2(y,x)*2+r;
x = r*cos(a);
y = r*sin(a);
val = exp(-x*x*y*y);
val = 1/(1+exp(-1000*(val)));
endfunction
%show.m
n=300;
l = 7;
A = zeros(n);
for i=1:n
for j=1:n
A(i,j) = spiral( 2*(i/n-0.5)*l,2*(j/n-0.5)*l);
end
end
imshow(A) %don't know if imshow is in matlab. I used octave.
the key for the sharpnes is line
val = 1/(1+exp(-1000*(val)));
It is logistic function. The number 1000 defines how sharp your image will be. So lower it for more blurry image or higher it for sharper.
I hope this answers your question ;)
Edit: It is real fun to play with. Here is another spiral:
function val = spiral(x,y)
s= 0.5;
r = sqrt( x*x + y*y);
a = atan2(y,x)*2+r*r*r;
x = r*cos(a);
y = r*sin(a);
val = 0;
if (abs(x)<s )
val = s-abs(x);
endif
if(abs(y)<s)
val =max(s-abs(y),val);
endif
%val = 1/(1+exp(-1*(val)));
endfunction
Edit2: Fun, fun, fun! Here the arms do not get thinner.
function val = spiral(x,y)
s= 0.1;
r = sqrt( x*x + y*y);
a = atan2(y,x)*2+r*r; % h
x = r*cos(a);
y = r*sin(a);
val = 0;
s = s*exp(r);
if (abs(x)<s )
val = s-abs(x);
endif
if(abs(y)<s)
val =max(s-abs(y),val);
endif
val = val/s;
val = 1/(1+exp(-10*(val)));
endfunction
Damn your question I really need to study for my exam, arghhh!
Edit3:
I vectorised the code and it runs much faster.
%spiral.m
function val = spiral(x,y)
s= 2;
r = sqrt( x.*x + y.*y);
a = atan2(y,x)*8+exp(r);
x = r.*cos(a);
y = r.*sin(a);
val = 0;
s = s.*exp(-0.1*r);
val = r;
val = (abs(x)<s ).*(s-abs(x));
val = val./s;
% val = 1./(1.+exp(-1*(val)));
endfunction
%show.m
n=1000;
l = 3;
A = zeros(n);
[X,Y] = meshgrid(-l:2*l/n:l);
A = spiral(X,Y);
imshow(A)
Sorry, can't post figures. But this might help. I wrote it for experiments with amplitude spatial modulators...
R=70; % radius of curvature of fresnel lens (in pixel units)
A=0; % oblique incidence by linear grating (1=oblique 0=collinear)
B=1; % expanding by fresnel lens (1=yes 0=no)
L=7; % topological charge
Lambda=30; % linear grating fringe spacing (in pixels)
aspect=1/2; % fraction of fringe period that is white/clear
xsize=1024; % resolution (xres x yres number data pts calculated)
ysize=768; %
% define the X and Y ranges (defined to skip zero)
xvec = linspace(-xsize/2, xsize/2, xsize); % list of x values
yvec = linspace(-ysize/2, ysize/2, ysize); % list of y values
% define the meshes - matrices linear in one dimension
[xmesh, ymesh] = meshgrid(xvec, yvec);
% calculate the individual phase components
vortexPh = atan2(ymesh,xmesh); % the vortex phase
linPh = -2*pi*ymesh; % a phase of linear grating
radialPh = (xmesh.^2+ymesh.^2); % a phase of defocus
% combine the phases with appropriate scales (phases are additive)
% the 'pi' at the end causes inversion of the pattern
Ph = L*vortexPh + A*linPh/Lambda + B*radialPh/R^2;
% transmittance function (the real part of exp(I*Ph))
T = cos(Ph);
% the binary version
binT = T > cos(pi*aspect);
% plot the pattern
% imagesc(binT)
imagesc(T)
colormap(gray)
I'm trying to compute the average of every pixel with just the left and right neighbors but at the end of my processing I get only a white image, I can't find where my error. Here's my code
imageIn = imread('Prueba.jpg');
imageIn = rgb2gray(imageIn);
imageOut = zeros(size(imageIn));
ny = size(imageIn, 1);
nx = size(imageIn, 2);
imshow(imageIn);
u = [];
v = [];
tic
for i = 1:ny
u = imageIn(i,:);
v = zeros(1, ny);
for k = 2:ny-1
v(k) = (uint32(u(k-1))+uint32(u(k))+uint32(u(k+1)))/3;
end
%Special cases first and last pixel
v(1) = (uint32(u(2))+uint32(u(1))+uint32(u(2)))/3;
v(ny) = (uint32(u(ny-1))+uint32(u(ny))+uint32(u(ny-1)))/3;
imageOut(i,:) = v;
end
toc
imshow(imageOut);
Any ideas?
Change the last line of your code to imagesc(imageOut) and you'll see that the image is not in fact white.
Your code is fine; the reason the image appears white using the imshow() function is because after applying your local average the range of pixel intensities is considerably smaller and the default scaling used by imshow() is insufficient to bring out the contrast of the image.
Read about the difference b/t imshow() and imagesc() and you'll see the confusion.
Why not just create a 2nd matrix which is a clone of the first, shift it over and then averate the two matrices?
imIn = imread('Prueba.jpg');
nx = size(d,1);
ny = size(d,2);
% Create temporary matrices padded with nan
tmp1 = [nan(ny,2), d];
tmp2 = [d, nan(ny,2)];
imOut = tmp1;
imOut(:,:,2) = tmp2;
% use nanmean so the mean is just the value of the 1 column
imOut = nanmean(imOut,3);
out = imOut(2:end-1,:);
Try to use this
imageIn = imread('Prueba.jpg');
imageIn = rgb2gray(imageIn);
imageOut = zeros(size(imageIn));
ny = size(imageIn, 1);
nx = size(imageIn, 2);
imshow(imageIn);
u = [];
v = [];
tic
for i = 1:ny
u = imageIn(i,:);
v = zeros(1, ny);
for k = 2:ny-1
v(k) = (uint32(u(k-1))+uint32(u(k))+uint32(u(k+1)))/3;
end
%Special cases first and last pixel
v(1) = (uint32(u(2))+uint32(u(1))+uint32(u(2)))/3;
v(ny) = (uint32(u(ny-1))+uint32(u(ny))+uint32(u(ny-1)))/3;
imageOut(i,:) = v;
end
toc
imshow(imageOut);