I'm trying to produce some computer generated holograms by using MATLAB. I used equally spaced mesh grid to initialize the spatial grid, and I got the following image
This pattern is sort of what I need except the center region. The fringe should be sharp but blurred. I think it might be the problem of the mesh grid. I tried generate a grid in polar coordinates and the map it into Cartesian coordinates by using MATLAB's pol2cart function. Unfortunately, it doesn't work as well. One may suggest that using fine grids. It doesn't work too. I think if I can generate a spiral mesh grid, perhaps the problem is solvable. In addition, the number of the spiral arms could, in general, be arbitrary, could anyone give me a hint on this?
I've attached the code (My final projects are not exactly the same, but it has a similar problem).
clc; clear all; close all;
%% initialization
tic
lambda = 1.55e-6;
k0 = 2*pi/lambda;
c0 = 3e8;
eta0 = 377;
scale = 0.25e-6;
NELEMENTS = 1600;
GoldenRatio = (1+sqrt(5))/2;
g = 2*pi*(1-1/GoldenRatio);
pntsrc = zeros(NELEMENTS, 3);
phisrc = zeros(NELEMENTS, 1);
for idxe = 1:NELEMENTS
pntsrc(idxe, :) = scale*sqrt(idxe)*[cos(idxe*g), sin(idxe*g), 0];
phisrc(idxe) = angle(-sin(idxe*g)+1i*cos(idxe*g));
end
phisrc = 3*phisrc/2; % 3 arms (topological charge ell=3)
%% post processing
sigma = 1;
polfilter = [0, 0, 1i*sigma; 0, 0, -1; -1i*sigma, 1, 0]; % cp filter
xboundl = -100e-6; xboundu = 100e-6;
yboundl = -100e-6; yboundu = 100e-6;
xf = linspace(xboundl, xboundu, 100);
yf = linspace(yboundl, yboundu, 100);
zf = -400e-6;
[pntobsx, pntobsy] = meshgrid(xf, yf);
% how to generate a right mesh grid such that we can generate a decent result?
pntobs = [pntobsx(:), pntobsy(:), zf*ones(size(pntobsx(:)))];
% arbitrary mesh may result in "wrong" results
NPNTOBS = size(pntobs, 1);
nxp = length(xf);
nyp = length(yf);
%% observation
Eobs = zeros(NPNTOBS, 3);
matlabpool open local 12
parfor nobs = 1:NPNTOBS
rp = pntobs(nobs, :);
Erad = [0; 0; 0];
for idx = 1:NELEMENTS
rs = pntsrc(idx, :);
p = exp(sigma*1i*2*phisrc(idx))*[1 -sigma*1i 0]/2; % simplified here
u = rp - rs;
r = sqrt(u(1)^2+u(2)^2+u(3)^2); %norm(u);
u = u/r; % unit vector
ut = [u(2)*p(3)-u(3)*p(2),...
u(3)*p(1)-u(1)*p(3), ...
u(1)*p(2)-u(2)*p(1)]; % cross product: u cross p
Erad = Erad + ... % u cross p cross u, do not use the built-in func
c0*k0^2/4/pi*exp(1i*k0*r)/r*eta0*...
[ut(2)*u(3)-ut(3)*u(2);...
ut(3)*u(1)-ut(1)*u(3); ...
ut(1)*u(2)-ut(2)*u(1)];
end
Eobs(nobs, :) = Erad; % filter neglected here
end
matlabpool close
Eobs = Eobs/max(max(sum(abs(Eobs), 2))); % normailized
%% source, gaussian beam
E0 = 1;
w0 = 80e-6;
theta = 0; % may be titled
RotateX = [1, 0, 0; ...
0, cosd(theta), -sind(theta); ...
0, sind(theta), cosd(theta)];
Esrc = zeros(NPNTOBS, 3);
for nobs = 1:NPNTOBS
rp = RotateX*[pntobs(nobs, 1:2).'; 0];
z = rp(3);
r = sqrt(sum(abs(rp(1:2)).^2));
zR = pi*w0^2/lambda;
wz = w0*sqrt(1+z^2/zR^2);
Rz = z^2+zR^2;
zetaz = atan(z/zR);
gaussian = E0*w0/wz*exp(-r^2/wz^2-1i*k0*z-1i*k0*0*r^2/Rz/2+1i*zetaz);% ...
Esrc(nobs, :) = (polfilter*gaussian*[1; -1i; 0]).'/sqrt(2)/2;
end
Esrc = [Esrc(:, 2), Esrc(:, 3), Esrc(:, 1)];
Esrc = Esrc/max(max(sum(abs(Esrc), 2))); % normailized
toc
%% visualization
fringe = Eobs + Esrc; % I'll have a different formula in my code
normEsrc = reshape(sum(abs(Esrc).^2, 2), [nyp nxp]);
normEobs = reshape(sum(abs(Eobs).^2, 2), [nyp nxp]);
normFringe = reshape(sum(abs(fringe).^2, 2), [nyp nxp]);
close all;
xf0 = linspace(xboundl, xboundu, 500);
yf0 = linspace(yboundl, yboundu, 500);
[xfi, yfi] = meshgrid(xf0, yf0);
data = interp2(xf, yf, normFringe, xfi, yfi);
figure; surf(xfi, yfi, data,'edgecolor','none');
% tri = delaunay(xfi, yfi); trisurf(tri, xfi, yfi, data, 'edgecolor','none');
xlim([xboundl, xboundu])
ylim([yboundl, yboundu])
% colorbar
view(0,90)
colormap(hot)
axis equal
axis off
title('fringe thereo. ', ...
'fontsize', 18)
I didn't read your code because it is too long to do such a simple thing. I wrote mine and here is the result:
the code is
%spiral.m
function val = spiral(x,y)
r = sqrt( x*x + y*y);
a = atan2(y,x)*2+r;
x = r*cos(a);
y = r*sin(a);
val = exp(-x*x*y*y);
val = 1/(1+exp(-1000*(val)));
endfunction
%show.m
n=300;
l = 7;
A = zeros(n);
for i=1:n
for j=1:n
A(i,j) = spiral( 2*(i/n-0.5)*l,2*(j/n-0.5)*l);
end
end
imshow(A) %don't know if imshow is in matlab. I used octave.
the key for the sharpnes is line
val = 1/(1+exp(-1000*(val)));
It is logistic function. The number 1000 defines how sharp your image will be. So lower it for more blurry image or higher it for sharper.
I hope this answers your question ;)
Edit: It is real fun to play with. Here is another spiral:
function val = spiral(x,y)
s= 0.5;
r = sqrt( x*x + y*y);
a = atan2(y,x)*2+r*r*r;
x = r*cos(a);
y = r*sin(a);
val = 0;
if (abs(x)<s )
val = s-abs(x);
endif
if(abs(y)<s)
val =max(s-abs(y),val);
endif
%val = 1/(1+exp(-1*(val)));
endfunction
Edit2: Fun, fun, fun! Here the arms do not get thinner.
function val = spiral(x,y)
s= 0.1;
r = sqrt( x*x + y*y);
a = atan2(y,x)*2+r*r; % h
x = r*cos(a);
y = r*sin(a);
val = 0;
s = s*exp(r);
if (abs(x)<s )
val = s-abs(x);
endif
if(abs(y)<s)
val =max(s-abs(y),val);
endif
val = val/s;
val = 1/(1+exp(-10*(val)));
endfunction
Damn your question I really need to study for my exam, arghhh!
Edit3:
I vectorised the code and it runs much faster.
%spiral.m
function val = spiral(x,y)
s= 2;
r = sqrt( x.*x + y.*y);
a = atan2(y,x)*8+exp(r);
x = r.*cos(a);
y = r.*sin(a);
val = 0;
s = s.*exp(-0.1*r);
val = r;
val = (abs(x)<s ).*(s-abs(x));
val = val./s;
% val = 1./(1.+exp(-1*(val)));
endfunction
%show.m
n=1000;
l = 3;
A = zeros(n);
[X,Y] = meshgrid(-l:2*l/n:l);
A = spiral(X,Y);
imshow(A)
Sorry, can't post figures. But this might help. I wrote it for experiments with amplitude spatial modulators...
R=70; % radius of curvature of fresnel lens (in pixel units)
A=0; % oblique incidence by linear grating (1=oblique 0=collinear)
B=1; % expanding by fresnel lens (1=yes 0=no)
L=7; % topological charge
Lambda=30; % linear grating fringe spacing (in pixels)
aspect=1/2; % fraction of fringe period that is white/clear
xsize=1024; % resolution (xres x yres number data pts calculated)
ysize=768; %
% define the X and Y ranges (defined to skip zero)
xvec = linspace(-xsize/2, xsize/2, xsize); % list of x values
yvec = linspace(-ysize/2, ysize/2, ysize); % list of y values
% define the meshes - matrices linear in one dimension
[xmesh, ymesh] = meshgrid(xvec, yvec);
% calculate the individual phase components
vortexPh = atan2(ymesh,xmesh); % the vortex phase
linPh = -2*pi*ymesh; % a phase of linear grating
radialPh = (xmesh.^2+ymesh.^2); % a phase of defocus
% combine the phases with appropriate scales (phases are additive)
% the 'pi' at the end causes inversion of the pattern
Ph = L*vortexPh + A*linPh/Lambda + B*radialPh/R^2;
% transmittance function (the real part of exp(I*Ph))
T = cos(Ph);
% the binary version
binT = T > cos(pi*aspect);
% plot the pattern
% imagesc(binT)
imagesc(T)
colormap(gray)
Related
Consider the following problem:
I am now in the third part of this question. I wrote the vectorial loop equations (q=teta2, x=teta3 and y=teta4):
fval(1,1) = r2*cos(q)+r3*cos(x)-r4*cos(y)-r1;
fval(2,1) = r2*sin(q)+r3*sin(x)-r4*sin(y);
I have these 2 functions, and all variables except x and y are given. I found the roots with help of this video.
Now I need to plot graphs of q versus x and q versus y when q is at [0,2pi] with delta q of 2.5 degree. What should I do to plot the graphs?
Below is my attempt so far:
function [fval,jac] = lorenzSystem(X)
%Define variables
x = X(1);
y = X(2);
q = pi/2;
r2 = 15
r3 = 50
r4 = 45
r1 = 40
%Define f(x)
fval(1,1)=r2*cos(q)+r3*cos(x)-r4*cos(y)-r1;
fval(2,1)=r2*sin(q)+r3*sin(x)-r4*sin(y);
%Define Jacobian
jac = [-r3*sin(X(1)), r4*sin(X(2));
r3*cos(X(1)), -r4*cos(X(2))];
%% Multivariate NR
%Initial conditions:
X0 = [0.5;1];
maxIter = 50;
tolX = 1e-6;
X = X0;
Xold = X0;
for i = 1:maxIter
[f,j] = lorenzSystem(X);
X = X - inv(j)*f;
err(:,i) = abs(X-Xold);
Xold = X;
if (err(:,i)<tolX)
break;
end
end
Please take a look at my solution below, and study how it differs from your own.
function [th2,th3,th4] = q65270276()
[th2,th3,th4] = lorenzSystem();
hF = figure(); hAx = axes(hF);
plot(hAx, deg2rad(th2), deg2rad(th3), deg2rad(th2), deg2rad(th4));
xlabel(hAx, '\theta_2')
xticks(hAx, 0:pi/3:2*pi);
xticklabels(hAx, {'$0$','$\frac{\pi}{3}$','$\frac{2\pi}{3}$','$\pi$','$\frac{4\pi}{3}$','$\frac{5\pi}{3}$','$2\pi$'});
hAx.TickLabelInterpreter = 'latex';
yticks(hAx, 0:pi/6:pi);
yticklabels(hAx, {'$0$','$\frac{\pi}{6}$','$\frac{\pi}{3}$','$\frac{\pi}{2}$','$\frac{2\pi}{3}$','$\frac{5\pi}{6}$','$\pi$'});
set(hAx, 'XLim', [0 2*pi], 'YLim', [0 pi], 'FontSize', 16);
grid(hAx, 'on');
legend(hAx, '\theta_3', '\theta_4')
end
function [th2,th3,th4] = lorenzSystem()
th2 = (0:2.5:360).';
[th3,th4] = deal(zeros(size(th2)));
% Define geometry:
r1 = 40;
r2 = 15;
r3 = 50;
r4 = 45;
% Define the residual:
res = #(q,X)[r2*cosd(q)+r3*cosd(X(1))-r4*cosd(X(2))-r1; ... Δx=0
r2*sind(q)+r3*sind(X(1))-r4*sind(X(2))]; % Δy=0
% Define the Jacobian:
J = #(X)[-r3*sind(X(1)), r4*sind(X(2));
r3*cosd(X(1)), -r4*cosd(X(2))];
X0 = [acosd((45^2-25^2-50^2)/(-2*25*50)); 180-acosd((50^2-25^2-45^2)/(-2*25*45))]; % Accurate guess
maxIter = 500;
tolX = 1e-6;
for idx = 1:numel(th2)
X = X0;
Xold = X0;
err = zeros(maxIter, 1); % Preallocation
for it = 1:maxIter
% Update the guess
f = res( th2(idx), Xold );
X = Xold - J(Xold) \ f;
% X = X - pinv(J(X)) * res( q(idx), X ); % May help when J(X) is close to singular
% Determine convergence
err(it) = (X-Xold).' * (X-Xold);
if err(it) < tolX
break
end
% Update history
Xold = X;
end
% Unpack and store θ₃, θ₄
th3(idx) = X(1);
th4(idx) = X(2);
% Update X0 for faster convergence of the next case:
X0 = X;
end
end
Several notes:
All computations are performed in degrees.
The specific plotting code I used is less interesting, what matters is that I defined all θ₂ in advance, then looped over them to find θ₃ and θ₄ (without recursion, as was done in your own implementation).
The initial guess (actually, analytical solution) for the very first case (θ₂=0) can be found by solving the problem manually (i.e. "on paper") using the law of cosines. The solver also works for other guesses, but you might need to increase maxIter. Also, for certain guesses (e.g. X(1)==X(2)), the Jacobian is ill-conditioned, in which case you can use pinv.
If my computation is correct, this is the result:
I am trying to estimate regression and AR parameters for (loads of) linear regressions with AR error terms. (You could also think of this as a MA process with exogenous variables):
, where
, with lags of length p
I am following the official matlab recommendations and use regArima to set up a number of regressions and extract regression and AR parameters (see reproducible example below).
The problem: regArima is slow! For 5 regressions, matlab needs 14.24sec. And I intend to run a large number of different regression models. Is there any quicker method around?
y = rand(100,1);
r2 = rand(100,1);
r3 = rand(100,1);
r4 = rand(100,1);
r5 = rand(100,1);
exo = [r2 r3 r4 r5];
tic
for p = 0:4
Mdl = regARIMA(3,0,0);
[EstMdl, ~, LogL] = estimate(Mdl,y,'X',exo,'Display','off');
end
toc
Unlike the regArima function which uses Maximum Likelihood, the Cochrane-Orcutt prodecure relies on an iteration of OLS regression. There are a few more particularities when this approach is valid (refer to the link posted). But for the aim of this question, the appraoch is valid, and fast!
I modified James Le Sage's code which covers only AR lags of order 1, to cover lags of order p.
function result = olsc(y,x,arterms)
% PURPOSE: computes Cochrane-Orcutt ols Regression for AR1 errors
%---------------------------------------------------
% USAGE: results = olsc(y,x)
% where: y = dependent variable vector (nobs x 1)
% x = independent variables matrix (nobs x nvar)
%---------------------------------------------------
% RETURNS: a structure
% results.meth = 'olsc'
% results.beta = bhat estimates
% results.rho = rho estimate
% results.tstat = t-stats
% results.trho = t-statistic for rho estimate
% results.yhat = yhat
% results.resid = residuals
% results.sige = e'*e/(n-k)
% results.rsqr = rsquared
% results.rbar = rbar-squared
% results.iter = niter x 3 matrix of [rho converg iteration#]
% results.nobs = nobs
% results.nvar = nvars
% results.y = y data vector
% --------------------------------------------------
% SEE ALSO: prt_reg(results), plt_reg(results)
%---------------------------------------------------
% written by:
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jpl#jpl.econ.utoledo.edu
% do error checking on inputs
if (nargin ~= 3); error('Wrong # of arguments to olsc'); end;
[nobs nvar] = size(x);
[nobs2 junk] = size(y);
if (nobs ~= nobs2); error('x and y must have same # obs in olsc'); end;
% ----- setup parameters
ITERMAX = 100;
converg = 1.0;
rho = zeros(arterms,1);
iter = 1;
% xtmp = lag(x,1);
% ytmp = lag(y,1);
% truncate 1st observation to feed the lag
% xlag = x(1:nobs-1,:);
% ylag = y(1:nobs-1,1);
yt = y(1+arterms:nobs,1);
xt = x(1+arterms:nobs,:);
xlag = zeros(nobs-arterms,arterms);
for tt = 1 : arterms
xlag(:,nvar*(tt-1)+1:nvar*(tt-1)+nvar) = x(arterms-tt+1:nobs-tt,:);
end
ylag = zeros(nobs-arterms,arterms);
for tt = 1 : arterms
ylag(:,tt) = y(arterms-tt+1:nobs-tt,:);
end
% setup storage for iteration results
iterout = zeros(ITERMAX,3);
while (converg > 0.0001) & (iter < ITERMAX),
% step 1, using intial rho = 0, do OLS to get bhat
ystar = yt - ylag*rho;
xstar = zeros(nobs-arterms,nvar);
for ii = 1 : nvar
tmp = zeros(1,arterms);
for tt = 1:arterms
tmp(1,tt)=ii+nvar*(tt-1);
end
xstar(:,ii) = xt(:,ii) - xlag(:,tmp)*rho;
end
beta = (xstar'*xstar)\xstar' * ystar;
e = y - x*beta;
% truncate 1st observation to account for the lag
et = e(1+arterms:nobs,1);
elagt = zeros(nobs-arterms,arterms);
for tt = 1 : arterms
elagt(:,tt) = e(arterms-tt+1:nobs-tt,:);
end
% step 2, update estimate of rho using residuals
% from step 1
res_rho = (elagt'*elagt)\elagt' * et;
rho_last = rho;
rho = res_rho;
converg = sum(abs(rho - rho_last));
% iterout(iter,1) = rho;
iterout(iter,2) = converg;
iterout(iter,3) = iter;
iter = iter + 1;
end; % end of while loop
if iter == ITERMAX
% error('ols_corc did not converge in 100 iterations');
print('ols_corc did not converge in 100 iterations');
end;
result.iter= iterout(1:iter-1,:);
% after convergence produce a final set of estimates using rho-value
ystar = yt - ylag*rho;
xstar = zeros(nobs-arterms,nvar);
for ii = 1 : nvar
tmp = zeros(1,arterms);
for tt = 1:arterms
tmp(1,tt)=ii+nvar*(tt-1);
end
xstar(:,ii) = xt(:,ii) - xlag(:,tmp)*rho;
end
result.beta = (xstar'*xstar)\xstar' * ystar;
e = y - x*result.beta;
et = e(1+arterms:nobs,1);
elagt = zeros(nobs-arterms,arterms);
for tt = 1 : arterms
elagt(:,tt) = e(arterms-tt+1:nobs-tt,:);
end
u = et - elagt*rho;
result.vare = std(u)^2;
result.meth = 'olsc';
result.rho = rho;
result.iter = iterout(1:iter-1,:);
% % compute t-statistic for rho
% varrho = (1-rho*rho)/(nobs-2);
% result.trho = rho/sqrt(varrho);
(I did not adapt in the last 2 lines the t-test for rho vectors of length p, but this should be straight forward to do..)
I am trying to reconstruct an image using the projections from the Neutron image scanner. I am using the following code. I am not able to obtain a meaningful reconstructed image.
Can anybody advise me on where I am going wrong.
much appreciated,
Vani
filename = strcat(' Z:\NIST_Data\2016\SEPT\example reconstructed\carboxylic\carboxylic reconstructed part 3\Coral\',srcFiles(i).name);
I=imread(filename);
P = im2double(I);
if i == 1
array3d = P;
else
array3d = cat(3, array3d, P);
end
end
num = size(array3d,3);
for p = 1:num
PR = double(squeeze(array3d(p,:,:)));
[L,C]=size(PR);
w = [-pi : (2*pi)/L : pi-(2*pi)/L];
Filt = abs(sin(w));
Filt = Filt(1:463);
for i = 1:C,
IMG = fft(PR(:,i));
end
FiltIMG = IMG*Filt; %FiltIMG = filter (b, a, IMG);
% Remove any remaining imaginary parts
FIL = real(FiltIMG);
% filter the projections
%filtPR = projfilter(PR);
%filtPR = filterplus(PR);
filtPR = FIL;
THETA=0:180;
% figure out how big our picture is going to be.
n = size(filtPR,1);
sideSize = n;
% convert THETA to radians
th = (pi/180)*THETA;
% set up the image
m = length(THETA);
BPI = zeros(sideSize,sideSize);
% find the middle index of the projections
midindex = (n+1)/2;
% set up x and y matrices
x = 1:sideSize;
y = 1:sideSize;
[X,Y] = meshgrid(x,y);
xpr = X - (sideSize+1)/2;
ypr = Y - (sideSize+1)/2;
% loop over each projection
%figure
%colormap(jet)
%M = moviein(m);
for i = 1:m
tic
disp(['On angle ', num2str(THETA(i))]);
% figure out which projections to add to which spots
filtIndex = round(midindex + xpr*sin(th(i)) - ypr*cos(th(i)));
% if we are "in bounds" then add the point
BPIa = zeros(sideSize,sideSize);
spota = find((filtIndex > 0) & (filtIndex <= n));
newfiltIndex = filtIndex(spota);
BPIa(spota) = filtPR(newfiltIndex(:),i);
%keyboard
BPI = BPI + BPIa;
toc
%imagesc(BPI)
%M(:,i) = getframe;
%figure(2)
%plot(filtPR(:,i));
%keyboard
end
BPI = BPI./m;
h=figure
imagesc(BPI)
saveas(h,sprintf('filtsli-FIG%d.tif',p));end
I am trying to get combined fit line made from two linear polyfit from either side (should intersect), here is the picture of fit lines:
I am trying to make the two fit (blue) lines intersect and produce a combined fit line as shown in the picture below:
Note that the crest can happen anywhere so I cannot assume to be in the center.
Here is the code that creates the first plot:
xdatPart1 = R;
zdatPart1 = z;
n = 3000;
ln = length(R);
[sX,In] = sort(R,1);
sZ = z(In);
xdatP1 = sX(1:n,1);
zdatP1 = sZ(1:n,1);
n2 = ln - 3000;
xdatP2 = sX(n2:ln,1);
zdatP2 = sZ(n2:ln,1);
pp1 = polyfit(xdatP1,zdatP1,1);
pp2 = polyfit(xdatP2,zdatP2,1);
ff1 = polyval(pp1,xdatP1);
ff2 = polyval(pp2,xdatP2);
xDat = [xdatPart1];
zDat = [zdatPart1];
axes(handles.axes2);
cla(handles.axes2);
plot(xdatPart1,zdatPart1,'.r');
hold on
plot(xdatP1,ff1,'.b');
plot(xdatP2,ff2,'.b');
xlabel(['R ',units]);
ylabel(['Z ', units]);
grid on
hold off
Below's a rough implementation with no curve fitting toolbox. Although the code should be self-explanatory, here's an outline of the algorithm:
We generate some data.
We estimate the intersection point by smoothing the data and finding the location of the maximum value.
We fit a line to each side of the estimated intersection point.
We compute the intersection of the fitted lines using the fitted equations.
We use mkpp to construct a function handle to an "evaluateable" piecewise polynomial.
The output, ppfunc, is a function handle of 1 variable, that you can use just like any regular function.
Now, this solution is not optimal in any sense (such as MMSE, LSQ, etc.) but as you will see in the comparison with the result from MATLAB's toolbox, it's not that bad!
function ppfunc = q40160257
%% Define the ground truth:
center_x = 6 + randn(1);
center_y = 78.15 + 0.01 * randn(1);
% Define a couple of points for the left section
leftmost_x = 0;
leftmost_y = 78.015 + 0.01 * randn(1);
% Define a couple of points for the right section
rightmost_x = 14.8;
rightmost_y = 78.02 + 0.01 * randn(1);
% Find the line equations:
m1 = (center_y-leftmost_y)/(center_x-leftmost_x);
n1 = getN(leftmost_x,leftmost_y,m1);
m2 = (rightmost_y-center_y)/(rightmost_x-center_x);
n2 = getN(rightmost_x,rightmost_y,m2);
% Print the ground truth:
fprintf(1,'The line equations are: {y1=%f*x+%f} , {y2=%f*x+%f}\n',m1,n1,m2,n2)
%% Generate some data:
NOISE_MAGNITUDE = 0.002;
N_POINTS_PER_SIDE = 1000;
x1 = linspace(leftmost_x,center_x,N_POINTS_PER_SIDE);
y1 = m1*x1+n1+NOISE_MAGNITUDE*randn(1,numel(x1));
x2 = linspace(center_x,rightmost_x,N_POINTS_PER_SIDE);
y2 = m2*x2+n2+NOISE_MAGNITUDE*randn(1,numel(x2));
X = [x1 x2(2:end)]; Y = [y1 y2(2:end)];
%% See what we have:
figure(); plot(X,Y,'.r'); hold on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Estimating the intersection point:
MOVING_AVERAGE_PERIOD = 10; % Play around with this value.
smoothed_data = conv(Y, ones(1,MOVING_AVERAGE_PERIOD)/MOVING_AVERAGE_PERIOD, 'same');
plot(X, smoothed_data, '-b'); ylim([floor(leftmost_y*10) ceil(center_y*10)]/10);
[~,centerInd] = max(smoothed_data);
fprintf(1,'The real intersection is at index %d, the estimated is at %d.\n',...
N_POINTS_PER_SIDE, centerInd);
%% Fitting a polynomial to each side:
p1 = polyfit(X(1:centerInd),Y(1:centerInd),1);
p2 = polyfit(X(centerInd+1:end),Y(centerInd+1:end),1);
[x_int,y_int] = getLineIntersection(p1,p2);
plot(x_int,y_int,'sg');
pp = mkpp([X(1) x_int X(end)],[p1; (p2 + [0 x_int*p2(1)])]);
ppfunc = #(x)ppval(pp,x);
plot(X, ppfunc(X),'-k','LineWidth',3)
legend('Original data', 'Smoothed data', 'Computed intersection',...
'Final piecewise-linear fit');
grid on; grid minor;
%% Comparison with the curve-fitting toolbox:
if license('test','Curve_Fitting_Toolbox')
ft = fittype( '(x<=-(n2-n1)/(m2-m1))*(m1*x+n1)+(x>-(n2-n1)/(m2-m1))*(m2*x+n2)',...
'independent', 'x', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
% Parameter order: m1, m2, n1, n2:
opts.StartPoint = [0.02 -0.02 78 78];
fitresult = fit( X(:), Y(:), ft, opts);
% Comparison with what we did above:
fprintf(1,[...
'Our solution:\n'...
'\tm1 = %-12f\n\tm2 = %-12f\n\tn1 = %-12f\n\tn2 = %-12f\n'...
'Curve Fitting Toolbox'' solution:\n'...
'\tm1 = %-12f\n\tm2 = %-12f\n\tn1 = %-12f\n\tn2 = %-12f\n'],...
m1,m2,n1,n2,fitresult.m1,fitresult.m2,fitresult.n1,fitresult.n2);
end
%% Helper functions:
function n = getN(x0,y0,m)
% y = m*x+n => n = y0-m*x0;
n = y0-m*x0;
function [x_int,y_int] = getLineIntersection(p1,p2)
% m1*x+n1 = m2*x+n2 => x = -(n2-n1)/(m2-m1)
x_int = -(p2(2)-p1(2))/(p2(1)-p1(1));
y_int = p1(1)*x_int+p1(2);
The result (sample run):
Our solution:
m1 = 0.022982
m2 = -0.011863
n1 = 78.012992
n2 = 78.208973
Curve Fitting Toolbox' solution:
m1 = 0.022974
m2 = -0.011882
n1 = 78.013022
n2 = 78.209127
Zoomed in around the intersection:
I want to use the line new command of PDE toolbox as Matlab R2015 to restore a noisy image with gaussian noise.
The PDE is:
∇.(( ∇u)/(√(1+|∇u|2))) +(f2)/(u2) = 1 in Ω (∂u)/(∂n)=0 in ∂Ω
Where f is the noisy image and u the restored image.
I tried the following code:
clear
close all
clc
img = 'AA.jpg';
mInputImage = double(imread(img));
mInputImage = rgb2gray(mInputImage);
[numRows, numCols] = size(mInputImage);
Var = 0.04;
Mean = 0;
mInputImageNoisy = imnoise((mInputImage(:,:,1)),'gaussian',Mean, Var);
% reshape the input and noisy images to vectors
mInputImageVector = reshape(mInputImage,numRows*numCols,1);
mInputImageNoisyVector = reshape(mInputImageNoisy,numRows*numCols,1);
Residu1 = norm(mInputImageVector-mInputImageNoisyVector)/norm(mInputImageVector)
RegularisationCoefficient = 0.7*ones((numRows-1)*(numCols-1),1);
mOutputImageVector = mInputImageNoisyVector;
%a = (mInputImageNoisyVector.^2) ./ mOutputImageVector.^3;
f = 1;
rtol = 1e-1;
c = '1./sqrt(1+ux.^2+uy.^2)';
% Create a PDE Model with a single dependent variable
numberOfPDE = 1;
pdem = createpde(numberOfPDE);
g = #squareg;
geometryFromEdges(pdem,g);
% Plot the geometry and display the edge labels for use in the boundary
% condition definition.
figure;
pdegplot(pdem, 'edgeLabels', 'on');
%axis([0 numRows 0 numCols]);
axis([-2 2 -2 2]);
title 'Geometry With Edge Labels Displayed'
b2 = applyBoundaryCondition(pdem,'Edge',[1 2 3 4], 'u', 0);
[p,e,t] = poimesh(g,numRows, numCols);
numCols
pdemesh(p,e,t);
axis equal
for iter = 1: numRows*numRows,
mOutputImageVector(iter) = pdenonlin(pdem,c,...
(mInputImageNoisyVector(iter).^2) ./ mOutputImageVector(iter).^3,...
f,'tol',rtol);
SaveImageVector(iter) = mOutputImageVector;
end
mOutputImage = reshape(SaveImageVector,numRows,numRows);
mOutputImage = uint8(mOutputImage);
figure()
imshow(mOutputImage)