Let us say that I have a Matlab function and I change its signature (i.e. add parameter). As Matlab does not 'compile' is there an easy way to determine which other functions do not use the right signature (i.e. submits the additional parameter). I do not want to determine this at runtime (i.e. get an error message) or have to do text searches. Hope this makes sense. Any feedback would be very much appreciated. Many thanks.
If I understand you correctly, you want to change a function's signature and find all functions/scripts/classes that call it in the "old" way, and change it to the "new" way.
You also indicated you don't want to do it at runtime, or do text searches, but there is no way to detect "incorrect" calls at "parse-time", so I'm afraid these demands leave no option at all to detect old function calls...
What I would do in that case is temporarily add a few lines to the new function:
function myFunc(param1, param2, newParam) % <-- the NEW signature
if nargin == 2
clc, error('old call detected.'); end
and then run the main script/function/whatever in which this function resides. You'll get one error for each time something calls the function incorrectly, along with the error stack in the Matlab command window.
It is then a matter of clicking on the link in the bottom of the error stack, correct the function call, and repeat from the top until no more errors occur.
Don't forget to remove these lines when you're done, or better, replace the word error with warning just to capture anything that was missed.
Better yet: if you're on linux, a text search would be a matter of
$ grep -l 'myFunc(.*,.*); *.m'
which will list all the files having the "incorrect" call. That's not too difficult I'd say...You can probably do a similar thing with the standard windows search, but I can't test that right now.
This is more or less what the dependency report was invented for. Using that tool, you can find what functions/scripts call your altered function. Then it is just a question of manually inspecting every occurrence.
However, I'd advise to make your changes to the function signature such that backwards compatibility is maintained. You can do so by specifying default values for new parameters and/or issuing a warning in those scenarios. That way, your code will run, and you will get run-time hints of deprecated code (which is more or less a necessary evil in interpreted/dynamic languages).
For many dynamic languages (and MATLAB specifically) it is generally impossible to fully inspect the code without the interpreter executing the code. Just imagine the following piece of code:
x = magic(10);
In general, you'd say that the magic function is called. However, magic could map to a totally different function. This could be done in ways that are invisible to a static analysis tool (such as the dependency report): e.g. eval('magic = 1:100;');.
The only way is to go through your whole code base, either inspecting every occurrence manually (which can be found easily with a text search) or by running a test that fully covers your code base.
edit:
There is however a way to access intermediate outputs of the MATLAB parser. This can be accessed using the undocumented and unsupported mtree function (which can be called like this: t = mtree(file, '-file'); for every file in your code base). Using the resulting structure you might be able to find calls with a certain amount of parameters.
Related
In the simulation window, before the run, I'd like to change some probability distributions (e.g. delay time) by typing, for example, "triangular(5, 20, 15)" into a specific editbox linked to a variable.
I know how to do this with static values, but I couldn't figure out how to do the same with probability distributions.
AnyLogic offers a built-in functionality for that with com.anylogic.engine.database.CodeValue.
It is originally meant that a distribution function stored as text in the internal database can be parsed to java code and executed, but it actually also works without the database and for any kind of code. It is the same idea as in Benjamin's answer, just that you do not need to add any external java library.
Use it like this:
CodeValue myCode = new CodeValue(this,"....java code to be executed");
myCode.execute();
And in your specific case, assuming you have a variable named variableA and an editbox named editbox, use the following to evaluate the expression, get a value and set it for the variable:
CodeValue myCode = new CodeValue(this,"variableA = "+editbox.getText());
myCode.execute();
Obviously, allowing the user to type any command there and running it without a check or error treatment is a bad idea, be aware of that.
This is a Java issue. You need to convert a String (your editbox content) to executable code. Not straight-forward but also not impossible, see Convert String to Code and similar posts.
I want to compile my app using matlab-compiler it does so, but with issues...
It says there are some functions that are not licensed for compilation.
The problem is that I haven't used those functions (one of them is fimath.m) in my app.
I think these functions are used inside some of my functions which I don't know.
My question is how to find out which one of my functions are using those functions in order to remove them or replace them with other functions.
There are more than 50 functions in my app and it's not possible to check them one by one.
For every returned "unlicensed" function you can execute the following command,
dbstop in <function name> % without the <>
and afterwards run your code normally for several typical inputs/cases. If it stops at one of these breakpoints, look at the call stack (using either dbstack or the Editor tab of the MATLAB GUI), and identify the entry point from your own code.
If none of the breakpoints is ever hit, it could mean that these functions are referred-to inside the code, but some logic is preventing their execution (turning them, practically, to "unreachable code"). In this case, you will likely need to remove these references manually. To know where from, using information from the link posted by VTodorov you can list the dependencies of each file using
[fList,pList] = matlab.codetools.requiredFilesAndProducts('myFun.m');
which can be called on the output of dir (after some minor conversion). It could be useful to use the toponly flag.
Fairly simply question, but I cannot find an answer via Google or on Stack.
I have a use-case where it would be highly-preferable to simply read a .m MATLAB script from a URL.
How should I do this correctly?
<disclaimer>
Clearly only do this with files you have complete control of (and/or find a solution with better validation). This is a "dangerous" method as there is no check that you're not about to run a file which, for example, copies your entire harddrive to Bob's computer before corrupting it all. Bob and Alice might be spending the whole evening laughing at your embarrassing holiday photos.
Treat this more as a proof of concept than a how-to, it addresses your problem but by no means should be used in production code.
</disclaimer>
You'll need to use eval to evaluate code. Every time I mention eval I feel compelled to point out it's not recommended, in particular in this case because you could be evaluating whatever random code is living in that file on the web! In this case your only alternative is to save the file locally and call run.
Then you can use
eval(urlread('http://myscript.m'))
or, since urlread is not recommended (from the docs), you can use webread and specify that the output should be text in the options
eval(webread('http://myscript.m', weboptions('ContentType', 'text')))
Using webread appears to be really slow, not sure why when it's the recommended function. In light of this, urlread might be preferable.
There is a note in the webread docs which suggests you wouldn't even need to specify the weboptions
If a web service returns a MATLABĀ® file with a .m extension, the function returns its content as a character vector.
Although you suggested that webread returned a uint8 variable which didn't work.
If you'd like to save a file from a URL then run it, you can use websave and str2func like so:
fcnName = 'newscript'; % Name for the function/script file
websave([fcnName '.m'], 'http://myscript.m'); % Download and save it
fcn = str2func(fcnName); % Create function handle
fcn(); % Evaluate function/script
It should of course go without saying that you want to be really sure you can trust the source of the file, otherwise you're gonna have a bad time.
What do I want?
I am looking for a way to detect all points in my code where a specific function is called.
Why do I want it?
Some examples:
Some output comes out sorted or randomized, and I want to know where this happens
I am considering to change/overload a function and want to know in which part of my code this could have impact
What have I tried?
I tried placing a breakpoint in the file that was called. This only works for non builtin functions which are called from short running code that always executes everything.
I tried 'find files', this way I can easily find direct calls to sort but it is not so easy to find a call to sort invoked by unique for example.
I have tried depfun, it tells me:
whether something will be called
from where non-builtin functions will be called
I thought of overloading the builtin function, but feels like a last resort for me as I am afraid to make a mess. | Edit: Also it probably won't help due to function precedence.
The question
What is the best way to track all potential (in)direct function calls from a specific function to a specific (built-in)function.
I don't exactly understand your use case, but I guess most of the information you want can be obtained using dbstack, which gives you the call-stack of all the parent functions calling a certain function. I think the easiest way is to overload built-in functions something like this (I tried to overload min):
function varargout = min(varargin)
% print info before function call
disp('Wrapped function called with inputs:')
disp(varargin)
[stack,I] = dbstack();
disp('Call stack:')
for i=1:length(stack)
fprintf('level %i: called from line %i in file %s\n', ...
i, stack(i).line, stack(i).file);
end
% call original function
[varargout{1:nargout}] = builtin('min', varargin{:});
% print info after function call
disp('Result of wrapped function:')
disp(varargout)
I tried to test this, but I could not make it work unfortunately, matlab keeps on using the original function, even after playing a lot with addpath. Not sure what I did wrong there, but I hope this gets you started ...
Built-in functions take precedence over functions in local folder or in path. There are two ways you can overload a built-in for direct calls from your own code. By putting your function in a private folder under the same directory where your other MATLAB functions are. This is easier if you are not already using private folder. You can rename your private folder once you are done investigating.
Another way is to use packages and importing them. You put all your override functions in a folder (e.g. +do_not_use). Then in the function where you suspect built-in calls are made add the line "import do_not_use.*;". This will make calls go to the functions in +do_not_use directory first. Once you are done checking you can use "clear import" to clear all imports. This is not easy to use if you have too many functions and do not know in which function you need to add import.
In addition to this, for each of the function you need to follow Bas Swinckels answer for the function body.
Function precedence order.
Those two methods does not work for indirect calls which are not from your own code. For indirect calls I can only think of one way where you create your own class based on built-in type. For example, if you work only on double precision types, you need to create your own class which inherits from double and override the methods you want to detect. Then pass this class as input to your code. Your code should work fine (assuming you are not using class(x) to decide code paths) since the new class should behave like a double data type. This option will not work if your output data is not created from your input data. See subclassing built-in types.
Did you try depfun?
The doc shows results similar to the ones you request.
doc depfun:
...
[list, builtins, classes, prob_files, prob_sym, eval_strings, called_from, java_classes] = depfun('fun') creates additional cell arrays or structure arrays containing information about any problems with the depfun search and about where the functions in list are invoked. The additional outputs are ...
Looks to me you could just filter the results for your function.
Though need to warn you - usually it takes forever to analyze code.
I have been reading someone else's matlab code and I don't know how the code structured. I mean I would like to know the hierarchy of functions, which function uses which function. I am reading the code to figure that out but its taking a lot of time.
So is there any other way I can see this hierarchy without reading the whole thing? To be honest it is starting to get confusing. Maybe MatLab has a built in function for that! I found this:
How can I generate a list of function dependencies in MATLAB?
but this doesn't seem to be helpful!
The MATLAB profiler will show you what functions are called by your code (and much more information to boot) and allow you to click through the hierarchy of function calls. You can either call profile on and then run your code, then call profile off and profile viewer, or you can simply call profile viewer and type a single line of code to run in the edit box at the top.
Use the dependency report provided in MATLAB:
http://www.mathworks.co.uk/help/matlab/matlab_prog/identify-dependencies.html
There are also some tools on the File Exchange, such as fdep.
No idea about a function to show visible or depended-upon functions. However the basic rules are:
1) Only the first function in a .m file (normally has to have the same name as the file itself) is visible outside that file.
2) Any function can see any top level (see 1.) function if the file is in the matlab path. Matlab can show you the path so you know where it's hunting.
3) The order of the path is important, the first instance of a function called foo found in the path will be called. Obviously the current directory is at the top of the path.
3) All functions in a given file can see all other functions in that file.
That's the basics. No doubt there are other rules, and possibly exceptions to this. But that understanding generally serves me well.
Obviously the easiest way to work out which function is being called is to click on it in the editor and open it.
One thing I do is simply place in each function at the beginning fprintf("inside function <name>/n"); and at the end of the function fprintf("leaving function <name>/n"); where <name> is the name of the function.
This will give you a very specific list of which function is being called by which function (based on the order that they appear). Another thing like this would be to place fprintf("function <name1> calling function <name2>/n"); so you can be more explicit about which function is being called by which one.