Read / run a MATLAB script from a URL - matlab

Fairly simply question, but I cannot find an answer via Google or on Stack.
I have a use-case where it would be highly-preferable to simply read a .m MATLAB script from a URL.
How should I do this correctly?

<disclaimer>
Clearly only do this with files you have complete control of (and/or find a solution with better validation). This is a "dangerous" method as there is no check that you're not about to run a file which, for example, copies your entire harddrive to Bob's computer before corrupting it all. Bob and Alice might be spending the whole evening laughing at your embarrassing holiday photos.
Treat this more as a proof of concept than a how-to, it addresses your problem but by no means should be used in production code.
</disclaimer>
You'll need to use eval to evaluate code. Every time I mention eval I feel compelled to point out it's not recommended, in particular in this case because you could be evaluating whatever random code is living in that file on the web! In this case your only alternative is to save the file locally and call run.
Then you can use
eval(urlread('http://myscript.m'))
or, since urlread is not recommended (from the docs), you can use webread and specify that the output should be text in the options
eval(webread('http://myscript.m', weboptions('ContentType', 'text')))
Using webread appears to be really slow, not sure why when it's the recommended function. In light of this, urlread might be preferable.
There is a note in the webread docs which suggests you wouldn't even need to specify the weboptions
If a web service returns a MATLAB® file with a .m extension, the function returns its content as a character vector.
Although you suggested that webread returned a uint8 variable which didn't work.

If you'd like to save a file from a URL then run it, you can use websave and str2func like so:
fcnName = 'newscript'; % Name for the function/script file
websave([fcnName '.m'], 'http://myscript.m'); % Download and save it
fcn = str2func(fcnName); % Create function handle
fcn(); % Evaluate function/script
It should of course go without saying that you want to be really sure you can trust the source of the file, otherwise you're gonna have a bad time.

Related

How to best possibly protect .m file?

I have an .m file which I wish to share with my friends but I am not interested in giving .m file. Could someone help me with best possible ways to convert it to a file that is not decodable?
I tried converting it to .p file by simply typing pcode example.m
however I don't believe it is really protecting it. I was able to convert my .p file back to .m file with the following link. https://sites.google.com/site/sippeyfunlabs/matlab-hacks/please-do-not-secure-your-password-in-matlab-p-code
This actually confirms that my code is not protected.
It'll be nice if someone shares the best methodology to protect .m file and sharing.
Thanks
The link you provided yourself already indicates that it is very difficult to obfuscate MATLAB code:
In fact, MATLAB language is very difficult to be secured or even obfuscated.
This is due to the late binding (or dynamic binding) feature of
MATLAB. [...] The amount of meta information associated with this
feature basically forbid any attempt of adding code level security.
Simply put, if there is a MATLAB file, and it calls a function foo
inside it. Until the runtime, the MATLAB interpreter do not even know
if foo is a function stored in M file or a built-in function or a mex
function or even a workspace function handle. Thus, it must store foo
as is somewhere inside the generated P-code.
Also to best solution is already mentioned on that page:
If there is really a need to do this, using the good old binary is a
much better solution. Or you can put critical code on a server, away
from the user.
Create a binary, i.e. mex file (see the answer of Wolfie): Note that to some extent also binary code can be decompiled especially small ones.
Host your code on a server (and run the code server-side): This is the best method to protect your code. You should let the user upload the input for your script and return the result. You can also automatize this process using a matlab script to make this process transparent to the user.
You could build a mex file.
This will completely obfuscate your actual MATLAB code, since it will be written in C/C++/FORTRAN, but the algorithms will still be there if your friends are determined enough to look for them.

hierarchy of functions in MatLab

I have been reading someone else's matlab code and I don't know how the code structured. I mean I would like to know the hierarchy of functions, which function uses which function. I am reading the code to figure that out but its taking a lot of time.
So is there any other way I can see this hierarchy without reading the whole thing? To be honest it is starting to get confusing. Maybe MatLab has a built in function for that! I found this:
How can I generate a list of function dependencies in MATLAB?
but this doesn't seem to be helpful!
The MATLAB profiler will show you what functions are called by your code (and much more information to boot) and allow you to click through the hierarchy of function calls. You can either call profile on and then run your code, then call profile off and profile viewer, or you can simply call profile viewer and type a single line of code to run in the edit box at the top.
Use the dependency report provided in MATLAB:
http://www.mathworks.co.uk/help/matlab/matlab_prog/identify-dependencies.html
There are also some tools on the File Exchange, such as fdep.
No idea about a function to show visible or depended-upon functions. However the basic rules are:
1) Only the first function in a .m file (normally has to have the same name as the file itself) is visible outside that file.
2) Any function can see any top level (see 1.) function if the file is in the matlab path. Matlab can show you the path so you know where it's hunting.
3) The order of the path is important, the first instance of a function called foo found in the path will be called. Obviously the current directory is at the top of the path.
3) All functions in a given file can see all other functions in that file.
That's the basics. No doubt there are other rules, and possibly exceptions to this. But that understanding generally serves me well.
Obviously the easiest way to work out which function is being called is to click on it in the editor and open it.
One thing I do is simply place in each function at the beginning fprintf("inside function <name>/n"); and at the end of the function fprintf("leaving function <name>/n"); where <name> is the name of the function.
This will give you a very specific list of which function is being called by which function (based on the order that they appear). Another thing like this would be to place fprintf("function <name1> calling function <name2>/n"); so you can be more explicit about which function is being called by which one.

Matlab function signature changes

Let us say that I have a Matlab function and I change its signature (i.e. add parameter). As Matlab does not 'compile' is there an easy way to determine which other functions do not use the right signature (i.e. submits the additional parameter). I do not want to determine this at runtime (i.e. get an error message) or have to do text searches. Hope this makes sense. Any feedback would be very much appreciated. Many thanks.
If I understand you correctly, you want to change a function's signature and find all functions/scripts/classes that call it in the "old" way, and change it to the "new" way.
You also indicated you don't want to do it at runtime, or do text searches, but there is no way to detect "incorrect" calls at "parse-time", so I'm afraid these demands leave no option at all to detect old function calls...
What I would do in that case is temporarily add a few lines to the new function:
function myFunc(param1, param2, newParam) % <-- the NEW signature
if nargin == 2
clc, error('old call detected.'); end
and then run the main script/function/whatever in which this function resides. You'll get one error for each time something calls the function incorrectly, along with the error stack in the Matlab command window.
It is then a matter of clicking on the link in the bottom of the error stack, correct the function call, and repeat from the top until no more errors occur.
Don't forget to remove these lines when you're done, or better, replace the word error with warning just to capture anything that was missed.
Better yet: if you're on linux, a text search would be a matter of
$ grep -l 'myFunc(.*,.*); *.m'
which will list all the files having the "incorrect" call. That's not too difficult I'd say...You can probably do a similar thing with the standard windows search, but I can't test that right now.
This is more or less what the dependency report was invented for. Using that tool, you can find what functions/scripts call your altered function. Then it is just a question of manually inspecting every occurrence.
However, I'd advise to make your changes to the function signature such that backwards compatibility is maintained. You can do so by specifying default values for new parameters and/or issuing a warning in those scenarios. That way, your code will run, and you will get run-time hints of deprecated code (which is more or less a necessary evil in interpreted/dynamic languages).
For many dynamic languages (and MATLAB specifically) it is generally impossible to fully inspect the code without the interpreter executing the code. Just imagine the following piece of code:
x = magic(10);
In general, you'd say that the magic function is called. However, magic could map to a totally different function. This could be done in ways that are invisible to a static analysis tool (such as the dependency report): e.g. eval('magic = 1:100;');.
The only way is to go through your whole code base, either inspecting every occurrence manually (which can be found easily with a text search) or by running a test that fully covers your code base.
edit:
There is however a way to access intermediate outputs of the MATLAB parser. This can be accessed using the undocumented and unsupported mtree function (which can be called like this: t = mtree(file, '-file'); for every file in your code base). Using the resulting structure you might be able to find calls with a certain amount of parameters.

Accessing variable by string name

I need to load experimental data into scicoslab, a (pretty badly designed) clone fork of scilab which happens to support graphical modeling. The documentation on the web is pretty poor, but it's reasonably similar to scilab and octave.
The data I need to process is contained into a certain number of text files: Data_005, Data_010, …, Data_100. Each of them can be loaded using the -ascii flag for the loadmatfile command.
The problem comes from the fact that loadmatfile("foo", "-ascii") loads the file foo.mat into a variable named foo. In order to to cycle on the data files, I would need to do something like:
for i = [5:5:100]
name = sprintf("Data_%02d", i);
loadmatfile(name, "-ascii");
x = read_var_from_name(name);
do_something(x);
end
where what I search for is a builtin read_var_from_name which would allow me to access the internal symbol table by string.
Do you know if there exist a similar function?
Notes:
There's no way of overriding this behavior if your file is in ascii format;
In this phase I could also use octave (no graphical modelling is involved), although it behaves in the same way.
>> foo = 3.14; name = 'foo'; eval(name)
foo =
3.1400
The above works in MATLAB, and Scilab's documentation says it also has an eval function. Not sure if I understood you correctly, though.
#arne.b has a good answer.
In your case you can also do that in matlab:
a=load('filename.mat')
x=a.('variable_name')
lets go through your points one by one:
"ScicosLab, a (pretty badly designed) clone of Scilab" This in my opinion is an inaccurate way of introducing the software. ScicosLab is not a clone of Scilab but a fork of it. The team behind ScicosLab (INRIA) are the ones who made scocos (now called xcos in Scilab development line). At some point (from Scilab v4) the Scilab team decided to move away from Tcl/tk towards Java, but the SciccosLab/scicos team departed, keep using the language (Tcl) and it's graphical user interface design package (tk). Giving the ScocosLab community the credit that the whole Scilab documentation and support is not very good in general. :) (more about Scilab and the forks here)
Regarding the technical question I'm not sure what you are trying to achieve here, Scilab/ScicosLab still have the eval function which basically does what you want. However this function is to be deprecated in favor of evstr. There is also the execstr function which worth studying.
The loadmatfile, as far as I have understood, "tries" to load the variables defined in a MATLAB .mat file (MATLAB's proprietary tabular format) into the Scilab workspace. For example if there is a variable foo it will "try" to create the variable foo and loads its value from the MATLAB script. Check this example. I would create a variable x(i) = foo in the for loop. again your question is not completely clear.
As a side note maybe you could consider exporting your data as CSV instead of .mat files.

how a function change in a loop with newtonsys command matlab

i want to change function variable at each step in a for loop in matlab.
i take these steps:
i created my mfile function
function [jfun,fun]=air(x,vt,ty,tz,p2,y0)
jfun=[(cos(tz)*cos(ty)*vt/9.81)*(1-exp(-9.81*x(2)/vt)),...
x(1)*cos(tz)*cos(ty)*exp(-9.81*x(1)/vt);
(-vt*sin(tz)*cos(ty)/9.81)*exp(-9.81*x(1)/vt),...
(x(1)*sin(tz)*cos(ty)*+vt)*exp(-9.81*x(1)/vt)];
fun=[(x(1)*cos(ty)*cos(tz)*vt/9.81)*(1-exp(-9.81*x(2)/vt))-p2;...
(vt/9.81)*(x(1)*sin(tz)*cos(ty)+vt)*(1-exp(-9.81*x(2)/vt))-vt*x(2)+y0];
end
and then i used newtonSys command:
ty=rad(-23)
tz=rad(15)
p2=1.8
vt=8.4925
y0=0.2
myfun=#(x)air(x,vt,ty,tz,p2,y0)
x=newtonSys(myfun,[15 5],0.000001,0.000001,500,1)
and matlab answer:
Error in ==> Untitled18 at 7
x=newtonSys(myfun,[15 5],0.000001,0.000001,500,1)
i guess that its because of wrong use of function handle and for my function i have to use another command or i have to use another method for solving 2nonlinear equation.
First, you haven't displayed the entire error. MATLAB should tell you what the actual error is, so unless you tell us that, we won't know what's wrong.
Secondly I don't see newtonSys in my system, or in the online MATLAB documentation. So most likely it is an external program, which most people here might not be familiar with. The closest I found from a quick Google search was this, which is an implementation of Newton's method for approximating the root of a non-linear system of n-equations. Are you using the same file? If so, if you look at the comments, it says that you need to pass the function as a string. So you'd have to pass myfun as 'myfun'.
If not, could you edit your question and add the contents of the function that you're using? Without these, it's near impossible to answer your question.