fortran90 reading array with real numbers - fortran90

I have a list of real data in a file. The real data looks like this..
25.935
25.550
24.274
29.936
23.122
27.360
28.154
24.320
28.613
27.601
29.948
29.367
I write fortran90 code to read this data into an array as below:
PROGRAM autocorr
implicit none
INTEGER, PARAMETER :: TRUN=4000,TCOR=1800
real,dimension(TRUN) :: angle
real :: temp, temp2, average1, average2
integer :: i, j, p, q, k, count1, t, count2
REAL, DIMENSION(0:TCOR) :: ACF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
open(100, file="fort.64",status="old")
do k = 1,TRUN
read(100,*) angle(k)
end do
Then, when I print again to see the values, I get
25.934999
25.549999
24.274000
29.936001
23.122000
27.360001
28.153999
24.320000
28.613001
27.601000
29.948000
29.367001
32.122002
33.818001
21.837000
29.283001
26.489000
24.010000
27.698000
30.799999
36.157001
29.034000
34.700001
26.058001
29.114000
24.177000
25.209000
25.820999
26.620001
29.761000
May I know why the values are now 6 decimal points?
How to avoid this effect so that it doesn't affect the calculation results?
Appreciate any help.
Thanks

You don't show the statement you use to write the values out again. I suspect, therefore, that you've used Fortran's list-directed output, something like this
write(output_unit,*) angle(k)
If you have done this you have surrendered the control of how many digits the program displays to the compiler. That's what the use of * in place of an explicit format means, the standard says that the compiler can use any reasonable representation of the number.
What you are seeing, therefore, is your numbers displayed with 8 sf which is about what single-precision floating-point numbers provide. If you wanted to display the numbers with only 3 digits after the decimal point you could write
write(output_unit,'(f8.3)') angle(k)
or some variation thereof.
You've declared angle to be of type real; unless you've overwritten the default with a compiler flag, this means that you are using single-precision IEEE754 floating-point numbers (on anything other than an exotic computer). Bear in mind too that most real (in the mathematical sense) numbers do not have an exact representation in floating-point and that the single-precision decimal approximation to the exact number 25.935 is likely to be 25.934999; the other numbers you print seem to be the floating-point approximations to the numbers your program reads.
If you really want to compute your results with a lower precision, then you are going to have to employ some clever programming techniques.

Related

How to convert values to N bits of resolution in MATLAB?

My computer uses 32 bits of resolution as default. I'm writing a script that involves taking measurements with a multimeter that has N bits of resolution. How do I convert the values to that?
For example, if I have a RNG that gives 1000 values
nums = randn(1,1000);
and I use an N-bit multimeter to read those values, how would I get the values to reflect that?
I currently have
meas = round(nums,N-1);
but it's giving me N digits, not N bits. The original random numbers are unbounded, but the resolution of the multimeter is the limitation; how to implement the limitation is what I'm looking for.
Edit I: I'm talking about the resolution of measurement, not the bounds of the numbers. The original values are unbounded. The accuracy of the measured values should be limited by the resolution.
Edit II: I revised the question to try to be a bit clearer.
randn doesn’t produce bounded numbers. Let’s say you are producing 32-bit integers instead:
mums = randi([0,2^32-1],1,n);
To drop the bottom 32-N bits, simply divide by an appropriate value and round (or take the floor):
nums = round(nums/(2^(32-N)));
Do note that we only use floating-point arithmetic here, numbers are integer-valued, but not actually integers. You can do a similar operation using actual integers if you need that.
Also, obviously, N should be lower than 32. You cannot invent new bits. If N is larger, the code above will add zero bits at the bottom of the number.
With a multimeter, it is likely that the range is something like -M V to M V with a a constant resolution, and you can configure the M selecting the range.
This is fixed point math. My answer will not use it because I don't have the toolbox available, if you have it you could use it to have simpler code.
You can generate the integer values with the intended resolution, then rescale it to the intended range.
F=2^N-1 %Maximum integer value
X=randi([0,F],100,1)
X*2*M/F-M %Rescale, divide by the integer range, multiply by the intended range. Then offset by intended minimum.

Are certain MATLAB functions only precise to a certain decimal? How precise is MATLAB really?

I am converting a program from MATLAB 2012 to 2016. I've been getting some strange errors, which I believe some of are due to a lack of precision in MATLAB functions.
For instance, I have a timeseries oldTs as such:
Time Data
-----------------------------
1.00000000000000001 1.277032377439511
1.00000000000000002 1.277032378456123
1.00000000000000003 1.277032380112478
I have another timeseries newTs with similar data, but many more rows. oldTs may have half a million rows, whereas newTs could have a million. I want to interpolate the data from the old timeseries with the new timeseries, for example:
interpolatedTs = interp(oldTs.time, oldTs.data, newTs.time)
This is giving me an error: x values must be distinct
The thing is, my x values are distinct. I think that MATLAB may be truncating some of the data, and therefore believing that some of the data is not unique. I found that other MATLAB functions do this:
test = [1.00000000000000001, 1.00000000000000002, 1.0000000000000000003]
unique(test)
ans =
1
test2 = [10000000000000000001, 10000000000000000002, 10000000000000000003]
unique(test2)
ans =
1.000000000000000e+19
MATLAB thinks that this vector only has one unique value in it instead of three! This is a huge issue for me, as I need to maintain the highest level of accuracy and precision with my data, and I cannot sacrifice any of that precision. Speed/Storage is not a factor.
Do certain MATLAB functions, by default, truncate data at a certain nth decimal? Has this changed from MATLAB 2012 to MATLAB 2016? Is there a way to force MATLAB to use a certain precision for a program? Why does MATLAB do this to begin with?
Any light shed on this topic is much appreciated. Thanks.
No, this has not changed since 2012, nor since the very first version of MATLAB. MATLAB uses, and has always used, double precision floating point values by default (8 bytes). The first value larger than 1 that can be represented is 1 + eps(1), with eps(1) = 2.2204e-16. Basically you have less than 16 decimal digits to play with. Your value 1.00000000000000001 is identical to 1 in double precision floating point representation.
Note that this is not something specific to MATLAB, it is a standard that your hardware conforms to. MATLAB simply uses your hardware's capabilities.
Use the variable precision arithmetic from the Symbolic Math Toolbox to work with higher precision numbers:
data = [vpa(1) + 0.00000000000000001
vpa(1) + 0.00000000000000002
vpa(1) + 0.00000000000000003]
data =
1.00000000000000001
1.00000000000000002
1.00000000000000003
Note that vpa(1.00000000000000001) will not work, as the number is first interpreted as a double-precision float value, and only after converted to VPA, but the damage has already been done at that point.
Note also that arithmetic with VPA is a lot slower, and some operations might not be possible at all.

how to get reverse(not complement or inverse) of a binary number

I am implementing cooley-tuckey fft(raddix - 2 DIF / DIT) algorithm in matlab.In that for the bit reversing i want to have reverse of an binary number. so can anyone suggest how can I get the reverse of a binary number(like 100111 -> 111001). One who have worked on fft implementation can help me with the algorithm also.
Topic: How to do bit reversal in Matlab? .
If you're using double precision floating point ('double') numbers
which are integers, you can do this:
dr = bin2dec(fliplr(dec2bin(d,n))); % Bits in dr are in reverse order
where n is the number of bits to be reversed and where 0 <= d < 2^n.
You will experience no precision problems at all as long as the
integers are no more than 52 bits long.
And
Re: How to do bit reversal in Matlab?
How large will the numbers be that you need to reverse? May I ask what
is the purpose of it? Maybe there is a more efficient way to solve the
whole problem. If the numbers are large you can just store the bits as
a string. To reverse it just read the string backwards! Or use
fliplr().
(There may be better places to ask).
If it were VHDL I'd suggest an alias with 'REVERSE'RANGE.
Taken from the help section;
Y = swapbytes(X) reverses the byte ordering of each element in array X, converting little-endian values to big-endian (and vice versa). The input array must contain all full, noncomplex, numeric elements.

Precise division of doubles representing integers exactly (when they are divisible)

Given that 8-byte doubles can represent all 4-byte ints precisely, I'm wondering whether dividing a double A storing an int, by a double B storing an int (such that the integer B divides A) will always give the exact double corresponding to the integer that is their quotient? So, if B and C are integers, and B*C fits within a 32-bit int, then is it guaranteed that
int B,C = whatever s.t. B*C does not overflow 32-bit int
double(B*C)/double(C) == double((B*C)/C) ?
Does the IEEE754 standard guarantee this?
In my testing, it seems to work for all examples I've tried. In Python:
>>> (321312321.0*3434343.0)/321312321.0 == 3434343.0
True
The reason for asking is that Matlab makes it hard to work with ints, so I often just use the default doubles for integer calculations. And when I know that the integers are exactly divisible, and if I know that the answer to the present question is yes, then I could avoid doing casts to ints, idivide(..) etc., which is less readable.
Luis Mendo's comment does answer this question, but to specifically address the use in Matlab there are some handy utilities described here. You can use eps(numberOfInterest) to find the distance to the next largest double-precision floating point number. For example:
eps(1) = 2^(-52)
eps(2^52) = 1
This practically guarantees that mathematical operations with integers held in a double will be precise provided they don't overflow 2^52, which is quite a bit larger than what is held in a 32-bit int type.

Why inverse equality does not satisfy in MATLAB?

MATLAB does not satisfy matrix arithmetic for inverse, that is;
(ABC)-1 = C-1 * B-1 * A-1
in MATLAB,
if inv(A*B*C) == inv(C)*inv(B)*inv(A)
disp('satisfied')
end
It does not qualify. When I made it format long, I realized that there is difference in points, but it even does not satisfy when I make it format rat.
Why is that so?
Very likely a floating point error. Note that the format function affects only how numbers display, not how MATLAB computes or saves them. So setting it to rat won't help the inaccuracy.
I haven't tested, but you may try the Fractions Toolbox for exact rational number arithmetics, which should give an equality to above.
Consider this (MATLAB R2011a):
a = 1e10;
>> b = inv(a)*inv(a)
b =
1.0000e-020
>> c = inv(a*a)
c =
1.0000e-020
>> b==c
ans =
0
>> format hex
>> b
b =
3bc79ca10c924224
>> c
c =
3bc79ca10c924223
When MATLAB calculates the intermediate quantities inv(a), or a*a (whether a is a scalar or a matrix), it by default stores them as the closest double precision floating point number - which is not exact. So when these slightly inaccurate intermediate results are used in subsequent calculations, there will be round off error.
Instead of comparing floating point numbers for direct equality, such as inv(A*B*C) == inv(C)*inv(B)*inv(A), it's often better to compare the absolute difference to a threshold, such as abs(inv(A*B*C) - inv(C)*inv(B)*inv(A)) < thresh. Here thresh can be an arbitrary small number, or some expression involving eps, which gives you the smallest difference between two numbers at the precision at which you're working.
The format command only controls the display of results at the command line, not the way in which results are internally stored. In particular, format rat does not make MATLAB do calculations symbolically. For this, you might take a look at the Symbolic Math Toolbox. format hex is often even more useful than format long for diagnosing floating point precision issues such as the one you've come across.