Bluetooth low energy (BLE 112 ) Difference between BGAPI and BGScript - iphone

What is the Difference between BGAPI and BGScript ?
And if we write any code for BG profile than how can we burn it in BLE 112?

The BGAPI interface defines the protocol used to talk to the module over USB or serial link.
BGScript is something which runs on the module processor itself, when the USB or serial link is not used.
I have the dongle, BLED112, which is the same thing as BLE112 with a USB connector on it, and the code is "burned" to it using standard USB DFU interface.
The downloading of the code to BLE112 can be done using several methods:
(1) Bring out the DD, DC debug interface pins from your module and use the CC-Debugger (digikey part 296-30207-ND, $55). This works every time. If you have the DKBLE112 kit, the CC-Debugger fits on the 10-pin .050 connector in lower right corner. You can "burn" any firmware and any stack this way. Works awesome.
(2) Hope that the current firmware on the CC2540 has serial bootloader, and load the new firmware (hopefully also containing serial bootloader) using UART. TI has the tools, but it sure seems quite convoluted to me, and I did not try it.

Related

Can't receive from USB bulk endpoint despite Windows enumerates and libusb reads descriptor of STM32 custom device class

For a fast ADC sampling USB device, I am using the USB 2.0 High Speed capable STM32F733 with the embedded USB-HS PHY. In USBView, I can see that the device is enumerated, the libusb code opens the device and claims interface, but when I try to receive data with libusb_bulk_transfer, the operation times out (return code -12). Things I have tried: I have confirmed than when I request data with libusb_bulk_transfer, the device is interrupted. Note: I have DMA enabled in my class configuration C file and it is not clear to me how that is triggered. I have verified that the transfersize and packet count registers are being set correctly by the LL library function, and that when I request data from
Any tips on debugging such problems will be much appreciated - this board is my undergrad thesis due in under two months!
Desktop sequence:
libusb_get_device_list, libusb_get_device_descriptor, libusb_open, libusb_get_string_descriptor_ascii, libusb_free_device_list, libusb_bulk_transfer(devh, fat_EPIN_ADDR, inframe, fat_EPIN_SIZE, &gotBytes, 100). Where gotBytes is integer, and inframe is a large array.
Device firmware:
MX_USB_DEVICE_Init();
uint8_t txBuffer[10*fat_EPIN_SIZE];
while (1)
{
USBD_LL_Transmit(&hUsbDeviceHS, Custom_fat_EPIN_ADDR, txBuffer, Custom_fat_EPIN_SIZE);
HAL_Delay(1);
}
Custom_fat_EPIN_SIZE is 0x200 and the endpoint address is 0x81 (EP IN 1)
Installed driver for device is WinUSB (verified in Device Manger to be winusb.sys), and I am linking libusb-1.0 into my desktop program. You can find my source code at https://gitlab.com/tywonemi-school-stuff/silicon-radar-fun, the firmware is My SW/v1 and the desktop software is a Qt Creator project in My SW/Viewer, of note is usb.cpp. You can also compare with testing project/HIDTest, which is code that I tested with STM32F303 nucleo dev board where I was able to read an array through IN bulk endpoint with the Viewer application. However, F3 has the USB peripheral, while F7 has OTG_USB, and I am now attempting USB 2.0 compliant HS so there may be more protocol-based pitfalls. You can also find the output of the device descriptor etc from USBView in my SW/USBView_broken.txt
EDIT 1: I have found finally some concrete error in the STM32 behavior. The DMAADDR is set for EPIN 0x81, and never increments, despite the DMA being enabled. I have went through literally every occurrence of the word "DMA" in the USB_OTG periphery.
I thought it might be that my linker script makes my array be stored in DTCM or similar, and the OTG DMA can't access it, but the address of txBuffer is 0x2003EBEC which is in SRAM2. The AHB matrix in the reference manual clearly shows, that the USB OTG HS DMA is master for a bus that SRAM2 is a slave of. And DTCM is connected too. I will look for application notes for USB OTG HS DMA - it just seems to be refusing to copy data!
I have fixed my issue by disabling the DMA setting. I have re-read the relevant portions of the reference manual and still don't know how exactly the values propagate into the Tx FIFOs. It is possible that DMA-less operation will be a major bottleneck in my project, I might return to this later.

Beagle Bone Black I2C2 Issues

I am having troubles using an I2C sensor with the Beagle Bone Black (BBB). The BBB is running a newly flashed 18.04 Ubuntu image specifically for the BBB.
I wired the sensor (VIN, GND, SCL, SDA) to the corresponding I2C2 pins (4, 2, 19, 20) on the BBB using the below pinout.
The sensor is supposed to be using address 0x40, but scanning I2C2 (using i2cdetect -r 2) does not show the sensor.
I have tested this with two separate sensors as I thought at first I may have fried the original sensor somehow, but the results are the same. In fact, running the I2C2 scan command yields the exact same results when nothing is connected at all.
I have read in many places that I2C2 may not be enabled by default, but I assume it is enabled in my case as I can scan I2C2 without getting an error. Is this assumption incorrect? Again, this is a freshly flashed BBB, and I have not enabled/disabled anything - it should be in the default state.
I have also verified the connectivity of my wires between the sensor and BBB. The voltage between VIN and GND on the chip is 3.3V, so it is definitely being powered.
Why can't I connect to my I2C sensors using the BBB?
it could be that the source you are using is outdated or not a viable entry for i2c.
Also, you could use this command to make sure i2c2 pins are available:
config-pin p9.21 i2c
config-pin p9.22 i2c
This may work, also. If this does not work, please reply with your entire source.
Seth
P.S. Also, if you have time, you may want to get an i2c library to use if your software falls short of setting up your own i2c library. They have smbus2 you can install with pip and other i2c libraries out there still.
Here are a few things you should check (in random order).
List all I2C buses wich i2cdetect -l and try them all. Depending on the platform, the i2c bus number in Linux may be different from the peripheral number used in the datasheet and pinout. E.g. "I2C2" might be bus i2c-1 or i2c-3 in Linux).
Use an oscilloscope or logical analyzer to see if the SCL and SDA lines are being driven. If they aren't check the bus number as above. If they are, then check whether the device gives an ACK; if it doesn't, anything else will never work: double-check the chip slave address. There are cheap logical analyzers that you can buy and user with pulseview.
Simply load the Linux driver for your chip (see the kernel docs on how to do it from userspace for a quick test). Then see check if the device appears or use dmesg to see any kernel error messages while probing.

FTDI Get modem status values (DSR, DCD, CTS)

I'm working on a project where I'd like to be able to send a simple on/off signal back to the PC via one of the modem pins (DSR, DCD, CTS), separate from the standard serial communications.
I'm having trouble accessing these when connecting to the device with the standard VPC serial driver.
Sample Python using pySerial:
import serial
def main(argv):
watchPort(sys.argv[1])
def watchPort(portName):
ser = serial.Serial(portName)
while True:
print("DCD {0}, DSR {1}, CTS {2}".format(ser.cd, ser.dsr, ser.cts))
time.sleep(0.5)
if __name__ == "__main__":
main()
These values are always the same, no matter if the pins are connected HIGH or LOW. I've also tested with a couple terminal programs to verify (CoolTerm, SerialTerm).
I am, however, able to get these values via the D2XX drivers and related APIs, but I'd rather use the simpler serial device method, if possible. Is this not possible?
Why?
I'm setting up a multi-drop RS485 network and planning to use one of these lines as a common signal line that can be used to signal "ready", "error" and to prevent communication collisions.
It turns out that the problem was with the stock FTDI driver that comes with OS X. (see post) Updating to the latest VPC driver fixed it.

serial monitoring method to test communication via com ports without a serial communication device

I have a Verilog code simulated and synthesized on ISE design toolkit. I've got an FPGA spartan 6 device which is to be used for the implementation. But there is a problem with the device (probably a power issue) which makes the device unavailable in any of the COM ports when I connected it to my PC. So I want to check whether my Matlab code which I made for serial communication through the device does the desired job. So I need a method to test serial communication via any of the COM ports without connecting a serial com device to the PC. Is there any such method that I can Tx Rx serial data from Matlab to COM ports? Any software or any other method would be highly appreciated :)
I found a way to test Matlab serial communication using virtual serial ports.
Download "Freeware Virtual COM Ports Emulator" from: http://freevirtualserialports.com/
I installed it in Windows 10, and it's working (as trial).
Add a pair of two serial ports:
Execute the following Matlab code sample to verify it's working:
s3 = serial('COM3','BaudRate',115200);
s4 = serial('COM4','BaudRate',115200);
fopen(s3);
fopen(s4);
fwrite(s3, uint8([1, 2, 3, 4, 5]));
%fprintf(s3, '12345');
pause(0.1);
RxBuf = fread(s4, 5)
fclose(s3);
delete(s3);
clear s3
fclose(s4);
delete(s4);
clear s4
The output is:
RxBuf =
1
2
3
4
5
Bypassing the problem "it only stays for a single test session".
There is a problem when creating a pair of virtual ports using the software, it only stays for a single test session.
I guess it's a problem with the COM port emulation software.
The following solution, is not a good practice (and not a true solution).
Declare the serial object as global, keeping the object persistent.
Create the serial object only if it's not created.
Don't delete and don't clear the serial object.
See the following code sample:
global s3 s4
if isempty(s3)
s3 = serial('COM3','BaudRate',115200);
end
if isempty(s4)
s4 = serial('COM4','BaudRate',115200);
end
fopen(s3);
fopen(s4);
fwrite(s3, uint8([1, 2, 3, 4, 5]));
pause(0.1);
RxBuf = fread(s4, 5)
fclose(s3);
%delete(s3);
%clear s3
fclose(s4);
%delete(s4);
%clear s4
You can also look for a better virtual COM port software.
As Rotem suggested, if you need to communicate via serial line between 2 program of your PC you need a virtual COM port emulator.
It seems you are running on Windows OS so I would recommend a completely free emulator (not a trial one). For Windows I use com0com Null-modem emulator (from SourceForge).
In the example below I will show how to communicate with "another" device so Matlab will not handle both side of the communication. The other device will be simulated by a simple terminal. For windows I use RealTerm: Serial/TCP Terminal (also from SourceForge).
Setup:
Execute the setup of both program with all default options. by default com0com will create a virtual pair COM3/COM4 but if these port already exist on your system the program may assign other numbers. Check the numbers before you run the example. (it will also create a CNCA0/CNCB0 pair but you can ignore this one for now).
For RealTerm, once installed (don't forget to activate the server registration at the end of the setup, it should be ticked by default though), it will look like below. Keep all default options, just set the port number and the baud rate if they need to be changed.
Test MATLAB -> Terminal
You are ready to send Ascii characters or binary values from MATLAB to your device. The animation below shows you an example of both option:
you can click on the picture to see it full size. It is running in loop so you may want to wait until it restart from the beginning.
Test Terminal -> MATLAB
Below animation shows you how to test the communication in the other way:
Don't forget to tick [CR] [LF] on RealTerm when you send Ascii characters and want to use the '%s' format specifier on MATLAB, as it needs these characters to detect the end of the string.
Note:
If you have another terminal program that you are more used too, it
will work the same.
If the RealTerm option does not suit you, or if you want to handle
both sides of communication from Matlab, then you can use the code
provided by Rotem in his first answer. Just install com0com but
ignore all the RealTerm part.

Linux and reading and writing a general purpose 32 bit register

I am using embedded Linux for the NIOS II processor and device tree. The GPIO functionality provides the ability to read and or write a single bit at a time. I have some firmware and PIOS that I want to read or write atomically by setting or reading all 32 bits at one time. It seems like there would be a generic device driver that if the device tree was given the proper compatibility a driver would exist that would allow opening the device and then reading and writing the device. I have searched for this functionality and do not find a driver. One existing in a branch but was removed by Linus.
My question is what is the Linux device tree way to read and write a device that is a general purpose 32 bit register/pio?
Your answer is SCULL
Character Device Drivers
You will have to write a character device driver with file operations to open and close a device. Read, write, ioctl, and copy the contents of device.
static struct file_operations query_fops =
{
.owner = THIS_MODULE,
.open = my_open,
.release = my_close,
.ioctl = my_ioctl
};
Map the address using iomem and directly read and write to that address using rawread and rawwrite. Create and register a device as follows and then it can be accessed from userspace:
register_chrdev (0, DEVICE_NAME, & query_fops);
device_create (dev_class, NULL, MKDEV (dev_major, 0), NULL, DEVICE_NAME);
and then access it from userspace as follows:
fd = open("/dev/mydevice", O_RDWR);
and then you can play with GPIO from userspace using ioctl's:
ioctl(fd, SET_STATE);