DOM event-listeners garbage collection - dom

If an event listener is attached to every cell in a particular column of a table, and then every row is removed from the table, to avoid memory leaks is it necessary for the developer to remove the event-listeners before the rows are deleted, or do the browsers clean things up?
Edit: the article that Michael suggested says event delegation performs better than binding the listener directly to every cell in the table, but I am not sure if it is better from a garbage-collection perspective or just performs better. Please comment. From the article:
$('table').on('click', 'td', function () {
$(this).toggleClass('active');
});
is said to be superior to:
$('table td').on('click', function () {
$(this).toggleClass('active');
});
Edit2: and the jQuery documentation of .on() and event delegation also focuses on performance, but the question of what happens from a garbage-collection perspective when rows are repeatedly deleted en masse from a large table, and the cell-click is being listened to by the delegated mechanism, remains.

I don't know exactly but i think browser(JavaScript engine) is responsible for Garbage-Collection.
and as i know this mechanism is automatic in new generation browsers
so, flow will be like this,
1. you create cells
2. you attach listeners
3. memory allocated
4. you remove cells
5. listeners becomes dangling
6. Garbage collector clears it
7. you are happy
also there are some mechanism provide to clear it explicitly, search SO for that and there will be many questions related to that
But again i am not sure ! so wait for experts to come up with solid answer

I am not sure, but i guess this brilliant article will clean things up (search for "Garbage Collection"): http://coding.smashingmagazine.com/2012/11/05/writing-fast-memory-efficient-javascript/

Related

Understanding Chrome Dev Tools timeline

I'm trying to understand why I have several Long Frames reported by Chrome Dev Tools.
The first row (top of the call stack) in the flame chart are mostly Timer Fired events, triggered by jQuery.Deferred()s executing a bunch of $(function(){ }); ready funcs.
If I dig into the jQuery source and replace their use of setTimeout with requestAnimationFrame the flame chart doesn't change much, I still get many of the rAFs firing within a single frame (as reported by dev tools) making long frames. I'd have expected doing the below pseudocode:
window.requestAnimationFrame(function() {
// do stuff
});
window.requestAnimationFrame(function() {
// do more stuff
});
to be executed on two difference animation frames. Is this not the case?
All of the JS that is executing is necessary, but what should I do to execute it as "micro tasks" (as hinted at, but not explained here https://developers.google.com/web/fundamentals/performance/rendering/optimize-javascript-execution) when setTimeout and rAF don't seem to achieve this.
Update
Here's a zoomed in shot of one of the long frames that doesn't seem to have any reflows (forced or otherwise) in it. Why are all the rAF callbacks here being executed in one frame?
Long frames are usually caused by forced synchronous layouts, which is when you (unintentionally) force a layout operation to happen early.
When you write to the DOM, the layout needs to be reflowed because it has been invalidated by the write operation. This usually happens at the next frame. However, if you try to read from the DOM, the layout happens early, in the current frame, in order to make sure that the correct value gets returned. When forced layout occurs, it causes long frames, leading to jank.
To prevent this from happening, you should only perform the write operations inside your requestAnimationFrame function. The read operations should be done outside of this, so as to avoid the browser doing an early layout.
Diagnose Forced Synchronous Layouts is a nicely explained article, and has a simple example demo for detecting forced reflow in DevTools, and how to resolve it.
It might also be worth checking out FastDom, which is a library for batching your read and write. It is basically a queuing system, and is more scalable.
Additional Source:
What forces layout / reflow, by Paul Irish, contains a comprehensive list of properties and methods that will force layout/reflow.
Update: As for the assumption that multiple requestAnimationFrame calls will execute callbacks on separate frames, this is not the case. When you have consecutive calls, the browser adds the callbacks to a document list of animation callbacks. When the browser goes to run the next frame, it traverses the document list and executes each of the callbacks, in the order they were added.
See Animation Frames from the HTML spec for more of the implementation details.
This means that you should avoid using the consecutive calls, especially where the callback function execution times combined exceed your frame budget. I think this would explain the long frames that aren't caused by reflow.

Form-related problems

I am new to Lift and I am thinking whether I should investigate it more closely and start using it as my main platform for the web development. However I have few "fears" which I would be happy to be dispelled first.
Security
Assume that I have the following snippet that generates a form. There are several fields and the user is allowed to edit just some of them.
def form(in : NodeSeq): NodeSeq = {
val data = Data.get(...)
<lift:children>
Element 1: { textIf(data.el1, data.el1(_), isEditable("el1")) }<br />
Element 2: { textIf(data.el2, data.el2(_), isEditable("el2")) }<br />
Element 3: { textIf(data.el3, data.el3(_), isEditable("el3")) }<br />
{ button("Save", () => data.save) }
</lift:children>
}
def textIf(label: String, handler: String => Any, editable: Boolean): NodeSeq =
if (editable) text(label, handler) else Text(label)
Am I right that there is no vulnerability that would allow a user to change a value of some field even though the isEditable method assigned to that field evaluates to false?
Performance
What is the best approach to form processing in Lift? I really like the way of defining anonymous functions as handlers for every field - however how does it scale? I guess that for every handler a function is added to the session with its closure and it stays there until the form is posted back. Doesn't it introduce some potential performance issue when it comes to a service under high loads (let's say 200 requests per second)? And when do these handlers get freed (if the form isn't resubmitted and the user either closes the browser or navigate to another page)?
Thank you!
With regards to security, you are correct. When an input is created, a handler function is generated and stored server-side using a GUID identifier. The function is session specific, and closed over by your code - so it is not accessible by other users and would be hard to replay. In the case of your example, since no input is ever displayed - no function is ever generated, and therefore it would not be possible to change the value if isEditable is false.
As for performance, on a single machine, Lift performs incredibly well. It does however require session-aware load balancing to scale horizontally, since the handler functions do not easily serialize across machines. One thing to remember is that Lift is incredibly flexible, and you can also create stateless form processing if you need to (albeit, it will not be as secure). I have never seen too much of a memory hit with the applications we have created and deployed. I don't have too many hard stats available, but in this thread, David Pollak mentioned that demo.liftweb.net at the time had 214 open sessions consuming about 100MB of ram (500K/session).
Also, here is a link to the Lift book's chapter on Scalability, which also has some more info on security.
The closure and all the stuff is surely cleaned at sessionShutdown. Earlier -- I don't know. Anyway, it's not really a theoretical question -- it highly depends on how users use web forms in practice. So, for a broader answer, I'd ask the question on the main channel of liftweb -- https://groups.google.com/forum/#!forum/liftweb
Also, you can use a "statical" form if you want to. But AFAIK there are no problems with memory and everybody is using the main approach to forms.
If you don't create the handler xml/html -- the user won't be able to change the data, that's for sure. In your code, if I understood it correctly (I'm not sure), you don't create "text(label,handler)" when it's not needed, so everything's secure.

What do the various ISubject implementations do and when would they be used?

I have a fairly good idea of what the Subject class does and when to use it, but I've just been looking through the language reference on msdn and see there are various other ISubject implementations such as:
AsyncSubject
BehaviorSubject
ReplaySubject
As the documentation is pretty thin on the ground, whats the point of each of these types and under what situations would you use them?
These subjects all share a common property - they take some (or all) of what gets posted to them via OnNext and record it and play it back to you - i.e. they take a Hot Observable and make it Cold. This means, that if you Subscribe to any of these more than once (i.e. Subscribe => Unsubscribe => Subscribe again), you'll see at least one of the same value again.
ReplaySubject: Every time you subscribe to the Subject, you get the entire history of what has been posted replayed back to you, as fast as possible (or a subset, like the last n items)
AsyncSubject: Always plays back the last item posted and completes, but only after the source has completed. This Subject is awesome for async functions, since you can write them without worrying about race conditions: even if someone Subscribes after the async method completes, they get the result.
BehaviorSubject: Kind of like ReplaySubject but with a buffer of one, so you always get the last thing that was posted. You also can provide an initial value. Always provides one item instantly on Subscribe.
In light of the latest version (v1.0.2856.0) and to keep this question up to date, there has been a new set of subject classes:
FastSubject, FastBehaviorSubject, FastAsyncSubject and FastReplaySubject
As per the release notes they
are much faster than regular subjects
but:
don’t decouple producer and consumer by an IScheduler
(effectively limiting them to
ImmediateScheduler);
don’t protect against stack overflow;
don’t synchronize input messages.
Fast subjects are used by Publish and
Prune operators if no scheduler is
specified.
In regards to AsyncSubject
This code:
var s = new AsyncSubject<int>();
s.OnNext(1);
s.Subscribe(Console.WriteLine);
s.OnNext(2);
s.OnNext(3);
s.OnCompleted();
prints a single value 3. And it prints same if subscription is moved to after completion. So it plays back not the first, but the last item, plays it after completion (until complete, it does not produce values), and it does not work like Subject before completion.
See this Prune discussion for more info (AsyncSubject is basically the same as Prune)
Paul's answer pretty much nails it. There's a few things worth adding, though:
AsyncSubject works as Paul says, but only after the source completes. Before that, it works like Subject (where "live" values are received by subscribers)
AsyncSubject has changed since I last ran tests against it. It no longer acts as a live subject before completion, but waits for completion before it emits a value. And, as Sergey mentions, it returns the last value, not the first (though I should have caught that as that's always been the case)
AsyncSubject is used by Prune, FromAsyncPattern, ToAsync and probably a few others
BehaviorSubject is used by overloads of Publish that accept an initial value
ReplaySubject is used by Replay
NOTE: All operator references above refer to the publishing set of operators as they were before they were replaced with generalised publish operators in rev 2838 (Christmas '10) as it has been mentioned that the original operators will be re-added

Undo for a paint program

I am looking into how to write a paint program that supports undo and seeing that, most likely, a command pattern is what I want. Something still escapes me, though, and I'm hoping someone can provide a simple answer or confirmation.
Basically, if I am to embody the ability to undo a command, for instance stamping a solid circle on the screen, does this mean I need to essentially copy the frame buffer that the circle covers into memory, into this command object? I don't see any other way of being able to undo what might be, for instance, stamping over a bunch of random pixel colors.
I've heard that one approach is just to keep track of the forward actions and when an undo is performed, you simply start from step 1 and draw forwards to the step before the undo, but this seems unfeasible if you are to support a large undo stack.
Perhaps the solution is something in between where you keep a bitmap of every 15-20 actions and start from the last 'save' forwards.
Can someone provide any insight on what is the typical accepted approach in this case, either saving buffer rectangles in the commands, redo-ing every action forwards, or something I've altogether missed?
Update: Plenty of good responses. Thanks, everyone. I'm thinking from what I'm reading that I will approach this by saving out the buffer every N actions and when the user issues an undo command redo all commands from the most recent saved buffer. I can tweak N to as high a value as possible that doesn't noticeably bog down the user experience of needing responsive undo (in order to minimize memory usage), but I suspect without really knowing for sure at this point, that I should be able to get away with performing quite a few actions in one frame such that this isn't too bad. Hopefully this approach will let me quickly determine whether to turn the other direction and instead go with saving bitmap rects for the previous states for actions that require it.
First, beware overdesign: if your app isn't complex and your images small, you may find 'just store everything' to be quick, cheap and feasible. But assuming that's not so:
You are correct that it is not feasible to redraw the entire canvas from step 1 forward for each undo; unless your paint program is very simple some operations simply take too long. Also, an infinite undo buffer is probably not called for (and could be very space-consuming to store).
If your art program is complex, I'd actually start with a hybrid approach, to deal with the variety of operations. Save frame buffer every so often (the every 15-20 commands you suggest seems OK; I might start with 10 and adjust once I had it working) and go forward from last save. But don't make the 'every 15 operations' rigid, because it is likely that a few extra rules of thumb would make it seem much more fluid to the user.
For example, some time-consuming or tricky-to-reverse operations could always create a new save point:
- Any canvas resize (crop etc.)
- Any save. ("I just saved" is a very likely place for the user to undo back to.)
- Any operation which is extremely time-consuming should create a new save point after, not before, the operation; i.e. it should flag the next operation to save the buffer to undo. (Why? If the op takes 30 seconds, you don't want every undo in the stack afterwards to take an extra 30+ seconds.)
- Conversely, any operation which has an easily performed mathematical negative, or is self-inverting (like photonegative) need never bother to save frame buffer, and shouldn't count towards the next save.
All of this leaves out the question of layers; if your program has them it's obviously sufficient to save only those layers that change.
Definitely my highest-priority suggestion though: regardless of what method you use, you should always save frame buffer for the most recent operation performed. "Whoops, didn't mean that" is the most likely reason for undo, so you always want undo-one-step to be responsive. You can discard this buffer after the next command execution if it's not one you're keeping.
You'll also need to consider what constitutes one atomic undo operation. (For example, is a set of strokes with a single brush tool one operation or many? Both have advantages and drawbacks.)
Perhaps the solution is something in between where you keep a bitmap of every 15-20 actions and start from the last 'save' forwards.
I would go with something like this one. You have to bound your command stack at some point anyway, so you'll need a starting point if the user empties it.
You could get clever and save the buffer when you reach the bound and use that as your save point, since you have to drop a command from the stack anyway. Essentially, your save point buffer is the representation of the dropped actions, so as you're dropping actions from your undo stack, you just write them onto that buffer.
I've heard that one approach is just to keep track of the forward actions and when an undo is performed, you simply start from step 1 and draw forwards to the step before the undo
This isn't a very good idea. Users typically undo only a few recent actions and they expect it to be fast, so it's better to be able to revert immediately than redoing everything from the start.
Can someone provide any insight on what is the typical accepted approach in this case, either saving buffer rectangles in the commands, redo-ing every action forwards, or something I've altogether missed?
You don't have to store all commands in the same way. Depending on the type of operation, you can use one or more techniques, for example:
Drawing/painting operations generally can't be reverted directly, so you have no choice but to save the original image contents. You can however save space by storing only parts of the image that have changed instead of the entire image.
Some operations like inverting colours are inherently invertible, so in such cases, you only need to store the type of operation on the undo stack, and you can replay the operation in either direction.
If you probably won't draw gigantic bitmaps, your approach seems totally ok.
To simplify even more, write whole pictures to tmp directory onto disk, and see what it will be like for the users.
Don't overdesign at start-there are other issues that need to be adressed, no doubt.
From my understanding, the command pattern for implementing undo/redo sorts of systems just record the actions in a stack, not the actual results from those actions (since those will be recreated/removed in sequence). I think you alluded to this, but said you considered it unfeasible for a large undo stack. Can you be more specific? I believe it is possible.

Tutorial OpenCl event handling

In my last question, OpenCl cleanup causes segfault. , somebody hinted that missing event handling, i.e. not waiting for code to finish, could cause the seg faults. Since then I looked again into the tutorials I used, but they don't pay attention to events (Matrix Multiplication 1 (OpenCL) and NVIDIA_OpenCL_GettingStartedLinux.pdf) or talk about it in detail and (for me) understandable.
Do you know a tutorial on where and how to wait in OpenCL?
Merci!
I don't have a tutorial on events in OpenCL, and I'm by no means an expert, but since no one else is responding...
As a rule of thumb, you'll need to wait for any function named clEnqueue*. Those functions return immediately before the job is done. The easiest way to make sure your queue is finished is to call clFinish(). It won't return until the entire queue has completed.
If you want to get a little fancier, most of the clEnqueue* functions have an optional cl_event parameter that you can pass in. You can check on a particular event with clGetEventInfo(), and you can wait for a particular set of events to finish with clWaitForEvents().