I have a neural network of which i need to estimate the average hyperplane which indicates the average error over all training examples. The training examples are present all at once. For example if i have a one variable function then i need to find the line which denotes the average value of the function. For my application exact average is not required, a heuristic will also do.
Average output of each output neuron over all training examples. where:
t_j' = sum_i_1_to_N (t_i_j)/N
Sum of squared difference between the average output (calculated above) of each output neuron for the training examples and the actual target output of each example:
Avg Error = 1/2 * sum_i_1_to_N (sum_j_1_C (t_j' - t_i_j))^2)
This is a heuristic but I want to know how it will also keep the Avg Error constant for a certain training set.
Is this way valid ? Is there any better way to find the average (kind of) of a neural network for a fixed training set ?
Without knowing more about your problem, I'd say no.
Avg Error = 1/2 * sum_i_1_to_N (sum_j_1_C (t_j' - t_i_j))^2)
The above looks to more like a standard deviation than an average. That won't tell you much, consider this:
Error = sum_i_1_to_N (sum_j_1_C ( ABS(c_j' - t_i_j) ))
(where c_j is the correct output at j)
Now you're looking at computationally cheap number that serves the same purpose of a numerical mean (you could divide all numbers by N to get the actually mean, but why would you bother?). The RMS would look like this:
ErrorRMS = sum_i_1_to_N (sum_j_1_C ( ABS(e_j' - t_i_j)^2 ))
Whether you want an RMS or an average will depend on your problem, but more often than not, it won't matter much (sets with lower RMS will tend to have a lower mean anyway, so you're mostly evolving the same thing).
Note that Error and ErrorRMS These aren't actually averages or RMS values, but they rank the same and they're cheaper to obtain.
That aside, assuming you have a neural network with multiple outputs, operating over multiple steps (thereby producing the error hyperplane you're talking about), then I would first and foremost suggest structuring the problem a little differently.
The only reason you should have a neural network with more than 1 output is if the outputs can only be understood in connection with each other. Otherwise you should be training N neural networks, rather than 1 neural network with N outputs. That having been said, if you can't produce a single error to describe all the outputs of a network over a single step, maybe you should be dividing it into multiple networks? Then you can simply take the RMS or straight average of the errors over the samples on which the network is tested.
Does this make sense?
Related
I just wanted to test how good can neural network approximate multiplication function (regression task).
I am using Azure Machine Learning Studio. I have 6500 samples, 1 hidden layer
(I have tested 5 /30 /100 neurons per hidden layer), no normalization. And default parameters
Learning rate - 0.005, Number of learning iterations - 200, The initial learning weigh - 0.1,
The momentum - 0 [description]. I got extremely bad accuracy, close to 0.
At the same time boosted Decision forest regression shows very good approximation.
What am I doing wrong? This task should be very easy for NN.
Big multiplication function gradient forces the net probably almost immediately into some horrifying state where all its hidden nodes have zero gradient.
We can use two approaches:
1) Devide by constant. We are just deviding everything before the learning and multiply after.
2) Make log-normalization. It makes multiplication into addition:
m = x*y => ln(m) = ln(x) + ln(y).
Some things to check:
Your output layer should have a linear activation function. If it's sigmoidal, it won't be able to represent values outside it's range (e.g. -1 to 1)
You should use a loss function that's appropriate for regression (e.g. squared error)
If your hidden layer uses sigmoidal activation functions, check that you're not saturating them. Multiplication can work on arbitrarily small/large values. And, if you pass a large number as input you can get saturation, which will lose information. If using ReLUs, make sure they're not getting stuck at 0 on all examples (although activations will generally be sparse on any given example).
Check that your training procedure is working as intended. Plot the error over time during training. How does it look? Are your gradients well behaved or are they blowing up? One source of problems can be the learning rate being set too high (unstable error, exploding gradients) or too low (very slow progress, error doesn't decrease quickly enough).
This is how I do multiplication with neural network:
import numpy as np
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Dense(150, activation='relu', input_shape=(2,)))
model.add(layers.Dense(1, activation='relu'))
data = np.random.random((10000, 2))
results = np.asarray([a * b for a, b in data])
model.compile(optimizer='sgd', loss='mae')
model.fit(data, results, epochs=1, batch_size=1)
model.predict([[0.8, 0.5]])
It works.
"Two approaches: divide by constant, or make log normalization"
I'm tried both approaches. Certainly, log normalization works since as you rightly point out it forces an implementation of addition. Dividing by constant -- or similarly normalizing across any range -- seems not to succeed in my extensive testing.
The log approach is fine, but if you have two datasets with a set of inputs and a target y value where:
In dataset one the target is consistently a sum of two of the inputs
In dataset two the target is consistently the product of two of the inputs
Then it's not clear to me how to design a neural network which will find the target y in both datasets using backpropogation. If this isn't possible, then I find it a surprising limitation in the ability of a neural network to find the "an approximation to any function". But I'm new to this game, and my expectations may be unrealistic.
Here is one way you could approximate the multiplication function using one hidden layer. It uses a sigmoidal activation in the hidden layer, and it works quite nicely until a certain range of numbers. This is the gist link
m = x*y => ln(m) = ln(x) + ln(y), but only if x, y > 0
I'm trying to create a sample neural network that can be used for credit scoring. Since this is a complicated structure for me, i'm trying to learn them small first.
I created a network using back propagation - input layer (2 nodes), 1 hidden layer (2 nodes +1 bias), output layer (1 node), which makes use of sigmoid as activation function for all layers. I'm trying to test it first using a^2+b2^2=c^2 which means my input would be a and b, and the target output would be c.
My problem is that my input and target output values are real numbers which can range from (-/infty, +/infty). So when I'm passing these values to my network, my error function would be something like (target- network output). Would that be correct or accurate? In the sense that I'm getting the difference between the network output (which is ranged from 0 to 1) and the target output (which is a large number).
I've read that the solution would be to normalise first, but I'm not really sure how to do this. Should i normalise both the input and target output values before feeding them to the network? What normalisation function is best to use cause I read different methods in normalising. After getting the optimized weights and use them to test some data, Im getting an output value between 0 and 1 because of the sigmoid function. Should i revert the computed values to the un-normalized/original form/value? Or should i only normalise the target output and not the input values? This really got me stuck for weeks as I'm not getting the desired outcome and not sure how to incorporate the normalisation idea in my training algorithm and testing..
Thank you very much!!
So to answer your questions :
Sigmoid function is squashing its input to interval (0, 1). It's usually useful in classification task because you can interpret its output as a probability of a certain class. Your network performes regression task (you need to approximate real valued function) - so it's better to set a linear function as an activation from your last hidden layer (in your case also first :) ).
I would advise you not to use sigmoid function as an activation function in your hidden layers. It's much better to use tanh or relu nolinearities. The detailed explaination (as well as some useful tips if you want to keep sigmoid as your activation) might be found here.
It's also important to understand that architecture of your network is not suitable for a task which you are trying to solve. You can learn a little bit of what different networks might learn here.
In case of normalization : the main reason why you should normalize your data is to not giving any spourius prior knowledge to your network. Consider two variables : age and income. First one varies from e.g. 5 to 90. Second one varies from e.g. 1000 to 100000. The mean absolute value is much bigger for income than for age so due to linear tranformations in your model - ANN is treating income as more important at the beginning of your training (because of random initialization). Now consider that you are trying to solve a task where you need to classify if a person given has grey hair :) Is income truly more important variable for this task?
There are a lot of rules of thumb on how you should normalize your input data. One is to squash all inputs to [0, 1] interval. Another is to make every variable to have mean = 0 and sd = 1. I usually use second method when the distribiution of a given variable is similiar to Normal Distribiution and first - in other cases.
When it comes to normalize the output it's usually also useful to normalize it when you are solving regression task (especially in multiple regression case) but it's not so crucial as in input case.
You should remember to keep parameters needed to restore the original size of your inputs and outputs. You should also remember to compute them only on a training set and apply it on both training, test and validation sets.
I'm using Matlab ( github code repository ). The details of the network are:
Hidden units: 100 ( variable )
Epochs : 500
Batch size: 100
The weights are being updated using Back propagation algorithm.
I've been able to recognize 0,1,2,3,4,5,6,8 which I have drawn in photoshop.
However 7,9 are not recognized, but upon running on the test set I get only 749/10000 wrong and it correctly classifies 9251/10000.
Any idea what might be wrong? Because it is learning and based on the test set results its learning correctly.
I don't see anything downright incorrect in your code, but there is a lot that can be improved:
You use this to set the initial weights:
hiddenWeights = rand(hiddenUnits,inputVectorSize);
outputWeights = rand(outputVectorSize,hiddenUnits);
hiddenWeights = hiddenWeights./size(hiddenWeights, 2);
outputWeights = outputWeights./size(outputWeights, 2);
This will make your weights very small I think. Not only that, but you will have no negative values, so you'll throw away half of the sigmoid's range of values. I suggest you try:
weights = 2*rand(x, y) - 1
Which will generate random numbers in [-1, 1]. You can then try dividing this interval to get smaller weights (try dividing by the sqrt of the size).
You use this as the output delta:
outputDelta = dactivation(outputActualInput).*(outputVector - targetVector) % (tk-yk)*f'(yin)
Multiplying by the derivative is done if you use the square loss function. For log loss (which is usually the one used in classification), you should have just outputVector - targetVector. It might not make that big of a difference, but you might want to try.
You say in the comments that the network doesn't detect your own sevens and nines. This can suggest overfitting on the MNIST data. To address this, you'll need to add some form of regularization to your network: either weight decay or dropout.
You should try different learning rates as well, if you haven't already.
You don't seem to have any bias neurons. Each layer, except the output layer, should have a neuron that only returns the value 1 to the next layer. You can implement this by adding another feature to your input data that is always 1.
MNIST is a big data set for which better algorithms are still being researched. Your networks is very basic, small, with no regularization, no bias neurons and no improvements to classic gradient descent. It's not surprising that it's not working too well: you'll likely need a more complex network for better results.
Nothing to do with neural nets or your code,
but this picture of KNN-nearest digits shows that some MNIST digits
are simply hard to recognize:
I used ntstool to create NAR (nonlinear Autoregressive) net object, by training on a 1x1247 input vector. (daily stock price for 6 years)
I have finished all the steps and saved the resulting net object to workspace.
Now I am clueless on how to use this object to predict the y(t) for example t = 2000, (I trained the model for t = 1:1247)
In some other threads, people recommended to use sim(net, t) function - however this will give me the same result for any value of t. (same with net(t) function)
I am not familiar with the specific neural net commands, but I think you are approaching this problem in the wrong way. Typically you want to model the evolution in time. You do this by specifying a certain window, say 3 months.
What you are training now is a single input vector, which has no information about evolution in time. The reason you always get the same prediction is because you only used a single point for training (even though it is 1247 dimensional, it is still 1 point).
You probably want to make input vectors of this nature (for simplicity, assume you are working with months):
[month1 month2; month2 month 3; month3 month4]
This example contains 2 training points with the evolution of 3 months. Note that they overlap.
Use the Network
After the network is trained and validated, the network object can be used to calculate the network response to any input. For example, if you want to find the network response to the fifth input vector in the building data set, you can use the following
a = net(houseInputs(:,5))
a =
34.3922
If you try this command, your output might be different, depending on the state of your random number generator when the network was initialized. Below, the network object is called to calculate the outputs for a concurrent set of all the input vectors in the housing data set. This is the batch mode form of simulation, in which all the input vectors are placed in one matrix. This is much more efficient than presenting the vectors one at a time.
a = net(houseInputs);
Each time a neural network is trained, can result in a different solution due to different initial weight and bias values and different divisions of data into training, validation, and test sets. As a result, different neural networks trained on the same problem can give different outputs for the same input. To ensure that a neural network of good accuracy has been found, retrain several times.
There are several other techniques for improving upon initial solutions if higher accuracy is desired. For more information, see Improve Neural Network Generalization and Avoid Overfitting.
strong text
edit:
A more pointed question:
What is the derivative of softmax to be used in my gradient descent?
This is more or less a research project for a course, and my understanding of NN is very/fairly limited, so please be patient :)
I am currently in the process of building a neural network that attempts to examine an input dataset and output the probability/likelihood of each classification (there are 5 different classifications). Naturally, the sum of all output nodes should add up to 1.
Currently, I have two layers, and I set the hidden layer to contain 10 nodes.
I came up with two different types of implementations
Logistic sigmoid for hidden layer activation, softmax for output activation
Softmax for both hidden layer and output activation
I am using gradient descent to find local maximums in order to adjust the hidden nodes' weights and the output nodes' weights. I am certain in that I have this correct for sigmoid. I am less certain with softmax (or whether I can use gradient descent at all), after a bit of researching, I couldn't find the answer and decided to compute the derivative myself and obtained softmax'(x) = softmax(x) - softmax(x)^2 (this returns an column vector of size n). I have also looked into the MATLAB NN toolkit, the derivative of softmax provided by the toolkit returned a square matrix of size nxn, where the diagonal coincides with the softmax'(x) that I calculated by hand; and I am not sure how to interpret the output matrix.
I ran each implementation with a learning rate of 0.001 and 1000 iterations of back propagation. However, my NN returns 0.2 (an even distribution) for all five output nodes, for any subset of the input dataset.
My conclusions:
I am fairly certain that my gradient of descent is incorrectly done, but I have no idea how to fix this.
Perhaps I am not using enough hidden nodes
Perhaps I should increase the number of layers
Any help would be greatly appreciated!
The dataset I am working with can be found here (processed Cleveland):
http://archive.ics.uci.edu/ml/datasets/Heart+Disease
The gradient you use is actually the same as with squared error: output - target. This might seem surprising at first, but the trick is that a different error function is minimized:
(- \sum^N_{n=1}\sum^K_{k=1} t_{kn} log(y_{kn}))
where log is the natural logarithm, N depicts the number of training examples and K the number of classes (and thus units in the output layer). t_kn depicts the binary coding (0 or 1) of the k'th class in the n'th training example. y_kn the corresponding network output.
Showing that the gradient is correct might be a good exercise, I haven't done it myself, though.
To your problem: You can check whether your gradient is correct by numerical differentiation. Say you have a function f and an implementation of f and f'. Then the following should hold:
(f'(x) = \frac{f(x - \epsilon) - f(x + \epsilon)}{2\epsilon} + O(\epsilon^2))
please look at sites.google.com/site/gatmkorn for the open-source Desire simulation program.
For the Windows version, /mydesire/neural folder has several softmax classifiers, some with softmax-specific gradient-descent algorithm.
In the examples, this works nicely for a simplemcharacter-recognition task.
ASee also
Korn, G.A.: Advanced dynamic-system Simulation, Wiley 2007
GAK
look at the link:
http://www.youtube.com/watch?v=UOt3M5IuD5s
the softmax derivative is: dyi/dzi= yi * (1.0 - yi);