sigmoid - back propagation neural network - neural-network

I'm trying to create a sample neural network that can be used for credit scoring. Since this is a complicated structure for me, i'm trying to learn them small first.
I created a network using back propagation - input layer (2 nodes), 1 hidden layer (2 nodes +1 bias), output layer (1 node), which makes use of sigmoid as activation function for all layers. I'm trying to test it first using a^2+b2^2=c^2 which means my input would be a and b, and the target output would be c.
My problem is that my input and target output values are real numbers which can range from (-/infty, +/infty). So when I'm passing these values to my network, my error function would be something like (target- network output). Would that be correct or accurate? In the sense that I'm getting the difference between the network output (which is ranged from 0 to 1) and the target output (which is a large number).
I've read that the solution would be to normalise first, but I'm not really sure how to do this. Should i normalise both the input and target output values before feeding them to the network? What normalisation function is best to use cause I read different methods in normalising. After getting the optimized weights and use them to test some data, Im getting an output value between 0 and 1 because of the sigmoid function. Should i revert the computed values to the un-normalized/original form/value? Or should i only normalise the target output and not the input values? This really got me stuck for weeks as I'm not getting the desired outcome and not sure how to incorporate the normalisation idea in my training algorithm and testing..
Thank you very much!!

So to answer your questions :
Sigmoid function is squashing its input to interval (0, 1). It's usually useful in classification task because you can interpret its output as a probability of a certain class. Your network performes regression task (you need to approximate real valued function) - so it's better to set a linear function as an activation from your last hidden layer (in your case also first :) ).
I would advise you not to use sigmoid function as an activation function in your hidden layers. It's much better to use tanh or relu nolinearities. The detailed explaination (as well as some useful tips if you want to keep sigmoid as your activation) might be found here.
It's also important to understand that architecture of your network is not suitable for a task which you are trying to solve. You can learn a little bit of what different networks might learn here.
In case of normalization : the main reason why you should normalize your data is to not giving any spourius prior knowledge to your network. Consider two variables : age and income. First one varies from e.g. 5 to 90. Second one varies from e.g. 1000 to 100000. The mean absolute value is much bigger for income than for age so due to linear tranformations in your model - ANN is treating income as more important at the beginning of your training (because of random initialization). Now consider that you are trying to solve a task where you need to classify if a person given has grey hair :) Is income truly more important variable for this task?
There are a lot of rules of thumb on how you should normalize your input data. One is to squash all inputs to [0, 1] interval. Another is to make every variable to have mean = 0 and sd = 1. I usually use second method when the distribiution of a given variable is similiar to Normal Distribiution and first - in other cases.
When it comes to normalize the output it's usually also useful to normalize it when you are solving regression task (especially in multiple regression case) but it's not so crucial as in input case.
You should remember to keep parameters needed to restore the original size of your inputs and outputs. You should also remember to compute them only on a training set and apply it on both training, test and validation sets.

Related

Is it possible to use evaluation metrics (like NDCG) as a loss function?

I am working on a Information Retrieval model called DPR which is a basically a neural network (2 BERTs) that ranks document, given a query. Currently, This model is trained in binary manners (documents are whether related or not related) and uses Negative Log Likelihood (NLL) loss. I want to change this binary behavior and create a model that can handle graded relevance (like 3 grades: relevant, somehow relevant, not relevant). I have to change the loss function because currently, I can only assign 1 positive target for each query (DPR uses pytorch NLLLoss) and this is not what I need.
I was wondering if I could use a evaluation metric like NDCG (Normalized Discounted Cumulative Gain) to calculate the loss. I mean, the whole point of a loss function is to tell how off our prediction is and NDCG is doing the same.
So, can I use such metrics in place of loss function with some modifications? In case of NDCG, I think something like subtracting the result from 1 (1 - NDCG_score) might be a good loss function. Is that true?
With best regards, Ali.
Yes, this is possible. You would want to apply a listwise learning to rank approach instead of the more standard pairwise loss function.
In pairwise loss, the network is provided with example pairs (rel, non-rel) and the ground-truth label is a binary one (say 1 if the first among the pair is relevant, and 0 otherwise).
In the listwise learning approach, however, during training you would provide a list instead of a pair and the ground-truth value (still a binary) would indicate if this permutation is indeed the optimal one, e.g. the one which maximizes nDCG. In a listwise approach, the ranking objective is thus transformed into a classification of the permutations.
For more details, refer to this paper.
Obviously, the network instead of taking features as input may take BERT vectors of queries and the documents within a list, similar to ColBERT. Unlike ColBERT, where you feed in vectors from 2 docs (pairwise training), for listwise training u need to feed in vectors from say 5 documents.

NARX Neural network prediction?

I am trying to solve a time series problem using the NARX Neural Network solution that Matlab provides. I am trying to understand how to predict actual values, but the results I get are almost perfect! The errors are so small that I am not sure if I am actually predicting. I just want to make sure I am doing everything right!
Basically I train the network with some samples using the GUI solution. Then I use the following script to test the neural network with new samples:
X = num2cell(open2(1:end))'; % input
T = num2cell(close2(1:end))'; % this is the output I should get
net = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)
view(net)
Y = cell2mat(Y);
T = cell2mat(T);
sizey = length(Y);
sizet = length(T);
T = T(1:sizey);
figure
plot(1:sizey,T,1:sizey,Y)
The graph I am getting is almost identical to the original target time series function. The errors are really small and the only difference is that the graph (Y) is shifted 2 samples to the left. But, am I really predicting?
Here's part of the graph:
Thanks in advance!
Update: The actual prediction graph is shifted to the right and not to the left. The targets provided by the preparets function (blue) occurs before! So it doesn't show it's actually predicting.
Right Shift
Your graph shows a timeshift of 1 (not 2!) timestep(s). This is not ideal, but can happen when the delays are badly chosen which leads to this kind of delay pattern. (For further explanation have a look at this question on MATLAB CENTRAL. In fact, Greg Heath posted a lot of material on ANNs, very worth the read even though it's sometimes a bit short to be understood immediately, especially for beginners.) So, to avoid this you have to look into the correlation patterns of your data.
Removedelay()
Now, I'm assuming that you wanted to correct for this behaviour by removing the delay of the network instead. Unfortunately, this is not what removedelay() is meant for:
This example uses a timedelaynet, but can be adopted for NAR and NARX networks as well, and I found the description very helpful. In combination with a quote from removedelay's documentation
The result is a network which behaves identically, except that outputs are produced n timesteps later.
it becomes clear that you're not changing the network, instead you only change the time dependence of your y-values, so your network will try to predict one time step ahead. You can see this behaviour at the very end of your T and Y vectors where Y will have an additional value while T fills this space with NaN (because you obviously cannot generate more targets out of the blue).
removedelay() is supposed to be used in combination with a closed loop design, so that you can obtain predicted values early to use them as direct input for the next step. In this case, it also makes sense to increase the output delay by more than just one which is why you can pass an additional argument n:
net = removedelay(net,n);
To prove that the additional time step is not used you can simulate the desired data set with your trained net and then simulate the same set with removedelay(). They are going to be identical except for the last value of the Y curve (see Figure 1).
Fig. 1: Both plots are based on the same net trained with the first 3500 data points of MATLAB's heat exchanger example. Shown are the simulation results for the last 500 values in the set that have not been used in the training process. The results are identical except for an additional value for the one on the left using removedelay().
Errors
Your errors have to be very small if you're using a representative training set. Therefore, the prediction for similar, new data will be good because your net is not overfitted.
Conclusions
So, are you predicting? No, you are simulating. Simulating your network's behaviour is based on inputs of your previously unknown data set, not the targets (they only have to be passed to allow for performance evaluation). Therefore, passing new data to your net with or without removedelay() is simulation in both cases because it is based on provided inputs. Removing the delay doesn't make a difference for these results.
Prediction, on the other hand, requires no input data because it really just continues the pattern the network has learned so far without taking new input into account.
Suggestions
If all you want is to have an unknown data set with valid input values passed to your net for simulation, you could just as well pass it as part of the testing set by using the divideblock or divideint options.
If you want to make use of early prediction by removedelay() or need prediction in general because your inputs have holes or are unreliable for other reasons, you should consider simulating your unknown set with a closed loop. Should its performance be all too awful you can also train a closed loop network from the very beginning.

Using a learned Artificial Neural Network to solve inputs

I've recently been delving into artificial neural networks again, both evolved and trained. I had a question regarding what methods, if any, to solve for inputs that would result in a target output set. Is there a name for this? Everything I try to look for leads me to backpropagation which isn't necessarily what I need. In my search, the closest thing I've come to expressing my question is
Is it possible to run a neural network in reverse?
Which told me that there, indeed, would be many solutions for networks that had varying numbers of nodes for the layers and they would not be trivial to solve for. I had the idea of just marching toward an ideal set of inputs using the weights that have been established during learning. Does anyone else have experience doing something like this?
In order to elaborate:
Say you have a network with 401 input nodes which represents a 20x20 grayscale image and a bias, two hidden layers consisting of 100+25 nodes, as well as 6 output nodes representing a classification (symbols, roman numerals, etc).
After training a neural network so that it can classify with an acceptable error, I would like to run the network backwards. This would mean I would input a classification in the output that I would like to see, and the network would imagine a set of inputs that would result in the expected output. So for the roman numeral example, this could mean that I would request it to run the net in reverse for the symbol 'X' and it would generate an image that would resemble what the net thought an 'X' looked like. In this way, I could get a good idea of the features it learned to separate the classifications. I feel as it would be very beneficial in understanding how ANNs function and learn in the grand scheme of things.
For a simple feed-forward fully connected NN, it is possible to project hidden unit activation into pixel space by taking inverse of activation function (for example Logit for sigmoid units), dividing it by sum of incoming weights and then multiplying that value by weight of each pixel. That will give visualization of average pattern, recognized by this hidden unit. Summing up these patterns for each hidden unit will result in average pattern, that corresponds to this particular set of hidden unit activities.Same procedure can be in principle be applied to to project output activations into hidden unit activity patterns.
This is indeed useful for analyzing what features NN learned in image recognition. For more complex methods you can take a look at this paper (besides everything it contains examples of patterns that NN can learn).
You can not exactly run NN in reverse, because it does not remember all information from source image - only patterns that it learned to detect. So network cannot "imagine a set inputs". However, it possible to sample probability distribution (taking weight as probability of activation of each pixel) and produce a set of patterns that can be recognized by particular neuron.
I know that you can, and I am working on a solution now. I have some code on my github here for imagining the inputs of a neural network that classifies the handwritten digits of the MNIST dataset, but I don't think it is entirely correct. Right now, I simply take a trained network and my desired output and multiply backwards by the learned weights at each layer until I have a value for inputs. This is skipping over the activation function and may have some other errors, but I am getting pretty reasonable images out of it. For example, this is the result of the trained network imagining a 3: number 3
Yes, you can run a probabilistic NN in reverse to get it to 'imagine' inputs that would match an output it's been trained to categorise.
I highly recommend Geoffrey Hinton's coursera course on NN's here:
https://www.coursera.org/course/neuralnets
He demonstrates in his introductory video a NN imagining various "2"s that it would recognise having been trained to identify the numerals 0 through 9. It's very impressive!
I think it's basically doing exactly what you're looking to do.
Gruff

Neural networks: classification using Encog

I'm trying to get started using neural networks for a classification problem. I chose to use the Encog 3.x library as I'm working on the JVM (in Scala). Please let me know if this problem is better handled by another library.
I've been using resilient backpropagation. I have 1 hidden layer, and e.g. 3 output neurons, one for each of the 3 target categories. So ideal outputs are either 1/0/0, 0/1/0 or 0/0/1. Now, the problem is that the training tries to minimize the error, e.g. turn 0.6/0.2/0.2 into 0.8/0.1/0.1 if the ideal output is 1/0/0. But since I'm picking the highest value as the predicted category, this doesn't matter for me, and I'd want the training to spend more effort in actually reducing the number of wrong predictions.
So I learnt that I should use a softmax function as the output (although it is unclear to me if this becomes a 4th layer or I should just replace the activation function of the 3rd layer with softmax), and then have the training reduce the cross entropy. Now I think that this cross entropy needs to be calculated either over the entire network or over the entire output layer, but the ErrorFunction that one can customize calculates the error on a neuron-by-neuron basis (reads array of ideal inputs and actual inputs, writes array of error values). So how does one actually do cross entropy minimization using Encog (or which other JVM-based library should I choose)?
I'm also working with Encog, but in Java, though I don't think it makes a real difference. I have similar problem and as far as I know you have to write your own function that minimizes cross entropy.
And as I understand it, softmax should just replace your 3rd layer.

How to use created "net" neural network object for prediction?

I used ntstool to create NAR (nonlinear Autoregressive) net object, by training on a 1x1247 input vector. (daily stock price for 6 years)
I have finished all the steps and saved the resulting net object to workspace.
Now I am clueless on how to use this object to predict the y(t) for example t = 2000, (I trained the model for t = 1:1247)
In some other threads, people recommended to use sim(net, t) function - however this will give me the same result for any value of t. (same with net(t) function)
I am not familiar with the specific neural net commands, but I think you are approaching this problem in the wrong way. Typically you want to model the evolution in time. You do this by specifying a certain window, say 3 months.
What you are training now is a single input vector, which has no information about evolution in time. The reason you always get the same prediction is because you only used a single point for training (even though it is 1247 dimensional, it is still 1 point).
You probably want to make input vectors of this nature (for simplicity, assume you are working with months):
[month1 month2; month2 month 3; month3 month4]
This example contains 2 training points with the evolution of 3 months. Note that they overlap.
Use the Network
After the network is trained and validated, the network object can be used to calculate the network response to any input. For example, if you want to find the network response to the fifth input vector in the building data set, you can use the following
a = net(houseInputs(:,5))
a =
34.3922
If you try this command, your output might be different, depending on the state of your random number generator when the network was initialized. Below, the network object is called to calculate the outputs for a concurrent set of all the input vectors in the housing data set. This is the batch mode form of simulation, in which all the input vectors are placed in one matrix. This is much more efficient than presenting the vectors one at a time.
a = net(houseInputs);
Each time a neural network is trained, can result in a different solution due to different initial weight and bias values and different divisions of data into training, validation, and test sets. As a result, different neural networks trained on the same problem can give different outputs for the same input. To ensure that a neural network of good accuracy has been found, retrain several times.
There are several other techniques for improving upon initial solutions if higher accuracy is desired. For more information, see Improve Neural Network Generalization and Avoid Overfitting.
strong text