Does the mongoDB broker for Celery work by polling? - mongodb

The Celery documentation for the mongoDB broker does not say whether or not it works by polling. I read in this blog post that pub/sub is possible with mongoDB, but I don't know if that's what the mongoDB broker for Celery does.
Two sub-questions:
if the broker works by polling, what is the frequency and how can I configure it?
if the broker works with tailable cursors, is it compatible with sharding (by queue name).
Thanks a lot.

I took a peek at the source code: Celery is based on Kombu, and judging from the mongoDB transport source code (kombu.transport.mongodb), the drain_events method is simply inherited from the kombu.transport.virtual.Transport class, which simply polls every second.
One can override the polling interval by setting the polling_interval attribute in the transport options (see this commit).

Related

Event trigger using Mongo/Kafka

I've a mongoDB instance with a collection holding calendar events. This is fed using a Kafka application.
These events need to feed into other downstream systems, using Kafka Streams, but what I'd like to invesitgate is whether is would be possible to only trigger an event to a downstream system when the event has just happened (rather then passing future events downstream).
So if an event is received and written to mongo for a date in the future, the downstream system will only know about it as that date is reached and not before.
I've looked at the normal connectors (mongoDB -> Kafka https://www.mongodb.com/kafka-connector) and that functionaility isn't provided.
One of the ways I thought about doing this would be to write a custom application which queries the mongo DB collection on a schedule between the "last run" and "now" to get all the events which occur within these times and create a downstream event into Kafka. (setting indexes on the query elements in the mongo document).
Is there any other way?
Many thanks for reading.
Jill
Instead of query the mongodb I would suggest to create a consumer group to the original kafka topic, which the mongodb data is ingested from and do if you recognize that the date is in the future -> create a rundeck / airflow scheduled task configured to that date, so your consumer logic will be simple.
Another solution you can try is to do some changes to the source connector that you found and try to merge it.
Good luck! Im here if you have any questions

Kafka Streams - How does it save the state internally

There are a lot of articles across the internet about the usage of the Kafka Streams, but almost nothing about how it's done internally.
Does it use any features inside Kafka outside the standard set (let's call "standard" the librdkafka implementation)?
If it saves the state inside RocksDB (or any custom StateStore), how it guarantees that the state saving and the commit are in one transaction?
The same question in the case when the state is saved in the compacted log (the commit and the log updated should be in one transaction).
Thank you.
I found the answers by combining information from several threads here.
It uses transactions (see https://stackoverflow.com/a/54593467/414016) which are unsupported (yet) by librdkafka.
It doesn't really rely on RocksDB, instead it saves the state changes into the commit log (see https://stackoverflow.com/a/50264900/414016).
It does it using the transactions as mentioned above.

High Scalability Question: How to sync data across multiple microservices

I have the following use cases:
Assume you have two micro-services one AccountManagement and ActivityReporting that processes event U.
When a user registers, event U containing the user information will published into a broker for the two micro-services to process.
AccountManagement, and ActivityReporting microservice are replicated across two instances each for performance and scalability reasons.
Each microservice instance has a consumer listening on the broker topic. The choice of topic is so that both AccountManagement, and ActivityReporting can process U concurrently.
However, I want only one instance of AccountManagement to process event U, and one instance of ActivityReporting to process event U.
Please share your experience implementing a Consume Once per Application Group, broker system.
As this would effectively solve this problem.
If all your consumer listeners even from different instances have the same group.id property then only one of them will receive the message. You need to set this property when you initialise the consumer. So in your case you will need one group.id for AccountManagement and another for ActivityReporting.
I would recommend Cadence Workflow which is much more powerful solution for microservice orchestration.
It offers a lot of advantages over using queues for your use case.
Built it exponential retries with unlimited expiration interval
Failure handling. For example it allows to execute a task that notifies another service if both updates couldn't succeed during a configured interval.
Support for long running heartbeating operations
Ability to implement complex task dependencies. For example to implement chaining of calls or compensation logic in case of unrecoverble failures (SAGA)
Gives complete visibility into current state of the update. For example when using queues all you know if there are some messages in a queue and you need additional DB to track the overall progress. With Cadence every event is recorded.
Ability to cancel an update in flight.
See the presentation that goes over Cadence programming model.

Synchronising transactions between database and Kafka producer

We have a micro-services architecture, with Kafka used as the communication mechanism between the services. Some of the services have their own databases. Say the user makes a call to Service A, which should result in a record (or set of records) being created in that service’s database. Additionally, this event should be reported to other services, as an item on a Kafka topic. What is the best way of ensuring that the database record(s) are only written if the Kafka topic is successfully updated (essentially creating a distributed transaction around the database update and the Kafka update)?
We are thinking of using spring-kafka (in a Spring Boot WebFlux service), and I can see that it has a KafkaTransactionManager, but from what I understand this is more about Kafka transactions themselves (ensuring consistency across the Kafka producers and consumers), rather than synchronising transactions across two systems (see here: “Kafka doesn't support XA and you have to deal with the possibility that the DB tx might commit while the Kafka tx rolls back.”). Additionally, I think this class relies on Spring’s transaction framework which, at least as far as I currently understand, is thread-bound, and won’t work if using a reactive approach (e.g. WebFlux) where different parts of an operation may execute on different threads. (We are using reactive-pg-client, so are manually handling transactions, rather than using Spring’s framework.)
Some options I can think of:
Don’t write the data to the database: only write it to Kafka. Then use a consumer (in Service A) to update the database. This seems like it might not be the most efficient, and will have problems in that the service which the user called cannot immediately see the database changes it should have just created.
Don’t write directly to Kafka: write to the database only, and use something like Debezium to report the change to Kafka. The problem here is that the changes are based on individual database records, whereas the business significant event to store in Kafka might involve a combination of data from multiple tables.
Write to the database first (if that fails, do nothing and just throw the exception). Then, when writing to Kafka, assume that the write might fail. Use the built-in auto-retry functionality to get it to keep trying for a while. If that eventually completely fails, try to write to a dead letter queue and create some sort of manual mechanism for admins to sort it out. And if writing to the DLQ fails (i.e. Kafka is completely down), just log it some other way (e.g. to the database), and again create some sort of manual mechanism for admins to sort it out.
Anyone got any thoughts or advice on the above, or able to correct any mistakes in my assumptions above?
Thanks in advance!
I'd suggest to use a slightly altered variant of approach 2.
Write into your database only, but in addition to the actual table writes, also write "events" into a special table within that same database; these event records would contain the aggregations you need. In the easiest way, you'd simply insert another entity e.g. mapped by JPA, which contains a JSON property with the aggregate payload. Of course this could be automated by some means of transaction listener / framework component.
Then use Debezium to capture the changes just from that table and stream them into Kafka. That way you have both: eventually consistent state in Kafka (the events in Kafka may trail behind or you might see a few events a second time after a restart, but eventually they'll reflect the database state) without the need for distributed transactions, and the business level event semantics you're after.
(Disclaimer: I'm the lead of Debezium; funnily enough I'm just in the process of writing a blog post discussing this approach in more detail)
Here are the posts
https://debezium.io/blog/2018/09/20/materializing-aggregate-views-with-hibernate-and-debezium/
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/
first of all, I have to say that I’m no Kafka, nor a Spring expert but I think that it’s more a conceptual challenge when writing to independent resources and the solution should be adaptable to your technology stack. Furthermore, I should say that this solution tries to solve the problem without an external component like Debezium, because in my opinion each additional component brings challenges in testing, maintaining and running an application which is often underestimated when choosing such an option. Also not every database can be used as a Debezium-source.
To make sure that we are talking about the same goals, let’s clarify the situation in an simplified airline example, where customers can buy tickets. After a successful order the customer will receive a message (mail, push-notification, …) that is sent by an external messaging system (the system we have to talk with).
In a traditional JMS world with an XA transaction between our database (where we store orders) and the JMS provider it would look like the following: The client sets the order to our app where we start a transaction. The app stores the order in its database. Then the message is sent to JMS and you can commit the transaction. Both operations participate at the transaction even when they’re talking to their own resources. As the XA transaction guarantees ACID we’re fine.
Let’s bring Kafka (or any other resource that is not able to participate at the XA transaction) in the game. As there is no coordinator that syncs both transactions anymore the main idea of the following is to split processing in two parts with a persistent state.
When you store the order in your database you can also store the message (with aggregated data) in the same database (e.g. as JSON in a CLOB-column) that you want to send to Kafka afterwards. Same resource – ACID guaranteed, everything fine so far. Now you need a mechanism that polls your “KafkaTasks”-Table for new tasks that should be send to a Kafka-Topic (e.g. with a timer service, maybe #Scheduled annotation can be used in Spring). After the message has been successfully sent to Kafka you can delete the task entry. This ensures that the message to Kafka is only sent when the order is also successfully stored in application database. Did we achieve the same guarantees as we have when using a XA transaction? Unfortunately, no, as there is still the chance that writing to Kafka works but the deletion of the task fails. In this case the retry-mechanism (you would need one as mentioned in your question) would reprocess the task an sends the message twice. If your business case is happy with this “at-least-once”-guarantee you’re done here with a imho semi-complex solution that could be easily implemented as framework functionality so not everyone has to bother with the details.
If you need “exactly-once” then you cannot store your state in the application database (in this case “deletion of a task” is the “state”) but instead you must store it in Kafka (assuming that you have ACID guarantees between two Kafka topics). An example: Let’s say you have 100 tasks in the table (IDs 1 to 100) and the task job processes the first 10. You write your Kafka messages to their topic and another message with the ID 10 to “your topic”. All in the same Kafka-transaction. In the next cycle you consume your topic (value is 10) and take this value to get the next 10 tasks (and delete the already processed tasks).
If there are easier (in-application) solutions with the same guarantees I’m looking forward to hear from you!
Sorry for the long answer but I hope it helps.
All the approach described above are the best way to approach the problem and are well defined pattern. You can explore these in the links provided below.
Pattern: Transactional outbox
Publish an event or message as part of a database transaction by saving it in an OUTBOX in the database.
http://microservices.io/patterns/data/transactional-outbox.html
Pattern: Polling publisher
Publish messages by polling the outbox in the database.
http://microservices.io/patterns/data/polling-publisher.html
Pattern: Transaction log tailing
Publish changes made to the database by tailing the transaction log.
http://microservices.io/patterns/data/transaction-log-tailing.html
Debezium is a valid answer but (as I've experienced) it can require some extra overhead of running an extra pod and making sure that pod doesn't fall over. This could just be me griping about a few back to back instances where pods OOM errored and didn't come back up, networking rule rollouts dropped some messages, WAL access to an aws aurora db started behaving oddly... It seems that everything that could have gone wrong, did. Not saying Debezium is bad, it's fantastically stable, but often for devs running it becomes a networking skill rather than a coding skill.
As a KISS solution using normal coding solutions that will work 99.99% of the time (and inform you of the .01%) would be:
Start Transaction
Sync save to DB
-> If fail, then bail out.
Async send message to kafka.
Block until the topic reports that it has received the
message.
-> if it times out or fails Abort Transaction.
-> if it succeeds Commit Transaction.
I'd suggest to use a new approach 2-phase message. In this new approach, much less codes are needed, and you don't need Debeziums any more.
https://betterprogramming.pub/an-alternative-to-outbox-pattern-7564562843ae
For this new approach, what you need to do is:
When writing your database, write an event record to an auxiliary table.
Submit a 2-phase message to DTM
Write a service to query whether an event is saved in the auxiliary table.
With the help of DTM SDK, you can accomplish the above 3 steps with 8 lines in Go, much less codes than other solutions.
msg := dtmcli.NewMsg(DtmServer, gid).
Add(busi.Busi+"/TransIn", &TransReq{Amount: 30})
err := msg.DoAndSubmitDB(busi.Busi+"/QueryPrepared", db, func(tx *sql.Tx) error {
return AdjustBalance(tx, busi.TransOutUID, -req.Amount)
})
app.GET(BusiAPI+"/QueryPrepared", dtmutil.WrapHandler2(func(c *gin.Context) interface{} {
return MustBarrierFromGin(c).QueryPrepared(db)
}))
Each of your origin options has its disadvantage:
The user cannot immediately see the database changes it have just created.
Debezium will capture the log of the database, which may be much larger than the events you wanted. Also deployment and maintenance of Debezium is not an easy job.
"built-in auto-retry functionality" is not cheap, it may require much codes or maintenance efforts.

Is there a good open-source MongoDB Queue Implementation for the C# Driver

Not that it wouldn't be easy (or fun) enough to write one, it makes sense not to re-invent the wheel so to speak. I've had a look around at various attempts, but I don't seem to have yet come across an implementation that supports these criteria;
Simple queue OSS system with MongoDB persistence;
C# Driver (official) based (so full POCO serialization)
Tailable cursors rather than polling
handles message timeout (GC correctly)
handles consumer failure (ideally crash detecting re-insertion, but timeout with delayed re-insertion is fine) so findAndModify on complete
multiple writers, multiple consumers
threadsafe
Nice to have;
allows for (latest only) message (replace older messages in the Q)
If anyone has nice simple a library like that floating around on GitHub that I've not yet found, please speak up!
There's my little project - a .net message bus implementation that works with MS SQL queues or MongoDB (MongoDB support is a recent addition). Link: http://code.google.com/p/nginn-messagebus/ and http://nginn.org/blog for some examples.
I'm not sure if this is what you're looking for, it's also lacking in documentation and example departments and it doesn't exactly match your specs (polling instead of tailing) - but maybe it's worth giving a try. This is a publish-subscribe message bus, like NServiceBus or MassTransit - not a raw message queue.
PS I'm afraid there are mutually exclusive requirements in your specs: you can't use tailable cursor with concurrent consumers because you lose atomicity. If you want to tail a queue you should use only a single consumer.