Event trigger using Mongo/Kafka - mongodb

I've a mongoDB instance with a collection holding calendar events. This is fed using a Kafka application.
These events need to feed into other downstream systems, using Kafka Streams, but what I'd like to invesitgate is whether is would be possible to only trigger an event to a downstream system when the event has just happened (rather then passing future events downstream).
So if an event is received and written to mongo for a date in the future, the downstream system will only know about it as that date is reached and not before.
I've looked at the normal connectors (mongoDB -> Kafka https://www.mongodb.com/kafka-connector) and that functionaility isn't provided.
One of the ways I thought about doing this would be to write a custom application which queries the mongo DB collection on a schedule between the "last run" and "now" to get all the events which occur within these times and create a downstream event into Kafka. (setting indexes on the query elements in the mongo document).
Is there any other way?
Many thanks for reading.
Jill

Instead of query the mongodb I would suggest to create a consumer group to the original kafka topic, which the mongodb data is ingested from and do if you recognize that the date is in the future -> create a rundeck / airflow scheduled task configured to that date, so your consumer logic will be simple.
Another solution you can try is to do some changes to the source connector that you found and try to merge it.
Good luck! Im here if you have any questions

Related

MongoDb, RabbitMq and outbox pattern

I have a question about mongodb and outbox pattern (and i'm quite newbie in mongo).
I am working on application, that uses mongodb as primary database.
I have some use cases, in which i need to save document to the database and then publish some event to message broker (RabbitMq).
Saved document must be consistent with published event - this means that if I save document i MUST also send message (solution must be resilient to for example server shutdown between document save and message send) so I decided to use outbox pattern.
In relational (sql) database this problem is trivial: I just start new transaction, then persist/change new object, then persist some kind of database scheduler record (that sends message to RabbitMq after transaction is committed), and then commit.
How do I achieve this in mongodb (once again with emphasis on no data loss and no 'phantom' message send). Should I use mongodb transactions (transactions are strongly disadvised in mongo community) or there are other, better solutions?
you can try mongodb change streams at a collection level. It is similar to triggers on the RDBMS world. You can then listen on that stream for events of your choice, in your case - an insert event, post which you can send that event to downstream systems.

Category projections using kafka and cassandra for event-sourcing

I'm using Cassandra and Kafka for event-sourcing, and it works quite well. But I've just recently discovered a potentially major flaw in the design/set-up. A brief intro to how it is done:
The aggregate command handler is basically a kafka consumer, which consumes messages of interest on a topic:
1.1 When it receives a command, it loads all events for the aggregate, and replays the aggregate event handler for each event to get the aggregate up to current state.
1.2 Based on the command and businiss logic it then applies one or more events to the event store. This involves inserting the new event(s) to the event store table in cassandra. The events are stamped with a version number for the aggregate - starting at version 0 for a new aggregate, making projections possible. In addition it sends the event to another topic (for projection purposes).
1.3 A kafka consumer will listen on the topic upon these events are published. This consumer will act as a projector. When it receives an event of interest, it loads the current read model for the aggregate. It checks that the version of the event it has received is the expected version, and then updates the read model.
This seems to work very well. The problem is when I want to have what EventStore calls category projections. Let's take Order aggregate as an example. I can easily project one or more read models pr Order. But if I want to for example have a projection which contains a customers 30 last orders, then I would need a category projection.
I'm just scratching my head how to accomplish this. I'm curious to know if any other are using Cassandra and Kafka for event sourcing. I've read a couple of places that some people discourage it. Maybe this is the reason.
I know EventStore has support for this built in. Maybe using Kafka as event store would be a better solution.
With this kind of architecture, you have to choose between:
Global event stream per type - simple
Partitioned event stream per type - scalable
Unless your system is fairly high throughput (say at least 10s or 100s of events per second for sustained periods to the stream type in question), the global stream is the simpler approach. Some systems (such as Event Store) give you the best of both worlds, by having very fine-grained streams (such as per aggregate instance) but with the ability to combine them into larger streams (per stream type/category/partition, per multiple stream types, etc.) in a performant and predictable way out of the box, while still being simple by only requiring you to keep track of a single global event position.
If you go partitioned with Kafka:
Your projection code will need to handle concurrent consumer groups accessing the same read models when processing events for different partitions that need to go into the same models. Depending on your target store for the projection, there are lots of ways to handle this (transactions, optimistic concurrency, atomic operations, etc.) but it would be a problem for some target stores
Your projection code will need to keep track of the stream position of each partition, not just a single position. If your projection reads from multiple streams, it has to keep track of lots of positions.
Using a global stream removes both of those concerns - performance is usually likely to be good enough.
In either case, you'll likely also want to get the stream position into the long term event storage (i.e. Cassandra) - you could do this by having a dedicated process reading from the event stream (partitioned or global) and just updating the events in Cassandra with the global or partition position of each event. (I have a similar thing with MongoDB - I have a process reading the 'oplog' and copying oplog timestamps into events, since oplog timestamps are totally ordered).
Another option is to drop Cassandra from the initial command processing and use Kafka Streams instead:
Partitioned command stream is processed by joining with a partitioned KTable of aggregates
Command result and events are computed
Atomically, KTable is updated with changed aggregate, events are written to event stream and command response is written to command response stream.
You would then have a downstream event processor that copies the events into Cassandra for easier querying etc. (and which can add the Kafka stream position to each event as it does it to give the category ordering). This can help with catch up subscriptions, etc. if you don't want to use Kafka for long term event storage. (To catch up, you'd just read as far as you can from Cassandra and then switch to streaming from Kafka from the position of the last Cassandra event). On the other hand, Kafka itself can store events for ever, so this isn't always necessary.
I hope this helps a bit with understanding the tradeoffs and problems you might encounter.

Event sourcing - why a dedicated event store?

I am trying to implement event sourcing/CQRS/DDD for the first time, mostly for learning purposes, where there is the idea of an event store and a message queue such as Apache Kafka, and you have events flowing from event store => Kafka Connect JDBC/Debezium CDC => Kafka.
I am wondering why there needs to be a separate event store when it sounds like its purpose can be fulfilled by Kafka itself with its main features and log compaction or configuring log retention for permanent storage. Should I store my events in a dedicated store like RDBMS to feed into Kafka or should I feed them straight into Kafka?
Much of the literature on event-sourcing and cqrs comes from the [domain driven design] community; in its earliest form, CQRS was called DDDD... Distributed domain driven design.
One of the common patterns in domain driven design is to have a domain model ensuring the integrity of the data in your durable storage, which is to say, ensuring that there are no internal contradictions...
I am wondering why there needs to be a separate event store when it sounds like its purpose can be fulfilled by Kafka itself with its main features and log compaction or configuring log retention for permanent storage.
So if we want an event stream with no internal contradictions, how do we achieve that? One way is to ensure that only a single process has permission to modify the stream. Unfortunately, that leaves you with a single point of failure -- the process dies, and everything comes to an end.
On the other hand, if you have multiple processes updating the same stream, then you have risk of concurrent writes, and data races, and contradictions being introduced because one writer couldn't yet see what the other one did.
With an RDBMS or an Event Store, we can solve this problem by using transactions, or compare and swap semantics; and attempt to extend the stream with new events is rejected if there has been a concurrent modification.
Furthermore, because of its DDD heritage, it is common for the durable store to be divided into many very fine grained partitions (aka "aggregates"). One single shopping cart might reasonably have four streams dedicated to it.
If Kafka lacks those capabilities, then it is going to be a lousy replacement for an event store. KAFKA-2260 has been open for more than four years now, so we seem to be lacking the first. From what I've been able to discern from the Kakfa literature, it isn't happy about fine grained streams either (although its been a while since I checked, perhaps things have changed).
See also: Jesper Hammarbäck writing about this 18 months ago, and reaching similar conclusions to those expressed here.
Kafka can be used as a DDD event store, but there are some complications if you do so due to the features it is missing.
Two key features that people use with event sourcing of aggregates are:
Load an aggregate, by reading the events for just that aggregate
When concurrently writing new events for an aggregate, ensure only one writer succeeds, to avoid corrupting the aggregate and breaking its invariants.
Kafka can't do either of these currently, since 1 fails since you generally need to have one stream per aggregate type (it doesn't scale to one stream per aggregate, and this wouldn't necessarily be desirable anyway), so there's no way to load just the events for one aggregate, and 2 fails since https://issues.apache.org/jira/browse/KAFKA-2260 has not been implemented.
So you have to write the system in such as way that capabilities 1 and 2 aren't needed. This can be done as follows:
Rather than invoking command handlers directly, write them to
streams. Have a command stream per aggregate type, sharded by
aggregate id (these don't need permanent retention). This ensures that you only ever process a single
command for a particular aggregate at a time.
Write snapshotting code for all your aggregate types
When processing a command message, do the following:
Load the aggregate snapshot
Validate the command against it
Write the new events (or return failure)
Apply the events to the aggregate
Save a new aggregate snapshot, including the current stream offset for the event stream
Return success to the client (via a reply message perhaps)
The only other problem is handling failures (such as the snapshotting failing). This can be handled during startup of a particular command processing partition - it simply needs to replay any events since the last snapshot succeeded, and update the corresponding snapshots before resuming command processing.
Kafka Streams appears to have the features to make this very simple - you have a KStream of commands that you transform into a KTable (containing snapshots, keyed by aggregate id) and a KStream of events (and possibly another stream containing responses). Kafka allows all this to work transactionally, so there is no risk of failing to update the snapshot. It will also handle migrating partitions to new servers, etc. (automatically loading the snapshot KTable into a local RocksDB when this happens).
there is the idea of an event store and a message queue such as Apache Kafka, and you have events flowing from event store => Kafka Connect JDBC/Debezium CDC => Kafka
In the essence of DDD-flavoured event sourcing, there's no place for message queues as such. One of the DDD tactical patterns is the aggregate pattern, which serves as a transactional boundary. DDD doesn't care how the aggregate state is persisted, and usually, people use state-based persistence with relational or document databases. When applying events-based persistence, we need to store new events as one transaction to the event store in a way that we can retrieve those events later in order to reconstruct the aggregate state. Thus, to support DDD-style event sourcing, the store needs to be able to index events by the aggregate id and we usually refer to the concept of the event stream, where such a stream is uniquely identified by the aggregate identifier, and where all events are stored in order, so the stream represents a single aggregate.
Because we rarely can live with a database that only allows us to retrieve a single entity by its id, we need to have some place where we can project those events into, so we can have a queryable store. That is what your diagram shows on the right side, as materialised views. More often, it is called the read side and models there are called read-models. That kind of store doesn't have to keep snapshots of aggregates. Quite the opposite, read-models serve the purpose to represent the system state in a way that can be directly consumed by the UI/API and often it doesn't match with the domain model as such.
As mentioned in one of the answers here, the typical command handler flow is:
Load one aggregate state by id, by reading all events for that aggregate. It already requires for the event store to support that kind of load, which Kafka cannot do.
Call the domain model (aggregate root method) to perform some action.
Store new events to the aggregate stream, all or none.
If you now start to write events to the store and publish them somewhere else, you get a two-phase commit issue, which is hard to solve. So, we usually prefer using products like EventStore, which has the ability to create a catch-up subscription for all written events. Kafka supports that too. It is also beneficial to have the ability to create new event indexes in the store, linking to existing events, especially if you have several systems using one store. In EventStore it can be done using internal projections, you can also do it with Kafka streams.
I would argue that indeed you don't need any messaging system between write and read sides. The write side should allow you to subscribe to the event feed, starting from any position in the event log, so you can build your read-models.
However, Kafka only works in systems that don't use the aggregate pattern, because it is essential to be able to use events, not a snapshot, as the source of truth, although it is of course discussable. I would look at the possibility to change the way how events are changing the entity state (fixing a bug, for example) and when you use events to reconstruct the entity state, you will be just fine, snapshots will stay the same and you'll need to apply correction events to fix all the snapshots.
I personally also prefer not to be tightly coupled to any infrastructure in my domain model. In fact, my domain models have zero dependencies on the infrastructure. By bringing the snapshotting logic to Kafka streams builder, I would be immediately coupled and from my point of view it is not the best solution.
Theoretically you can use Kafka for Event Store but as many people mentioned above that you will have several restrictions, biggest of those, only able to read event with the offset in the Kafka but no other criteria.
For this reason they are Frameworks there dealing with the Event Sourcing and CQRS part of the problem.
Kafka is only part of the toolchain which provides you the capability of replaying events and back pressure mechanism that are protecting you from overload.
If you want to see how all fits together, I have a blog about it

Event sourcing with Kafka streams

I'm trying to implement a simple CQRS/event sourcing proof of concept on top of Kafka streams (as described in https://www.confluent.io/blog/event-sourcing-using-apache-kafka/)
I have 4 basic parts:
commands topic, which uses the aggregate ID as the key for sequential processing of commands per aggregate
events topic, to which every change in aggregate state are published (again, key is the aggregate ID). This topic has a retention policy of "never delete"
A KTable to reduce aggregate state and save it to a state store
events topic stream ->
group to a Ktable by aggregate ID ->
reduce aggregate events to current state ->
materialize as a state store
commands processor - commands stream, left joined with aggregate state KTable. For each entry in the resulting stream, use a function (command, state) => events to produce resulting events and publish them to the events topic
The question is - is there a way to make sure I have the latest version of the aggregate in the state store?
I want to reject a command if violates business rules (for example - a command to modify the entity is not valid if the entity was marked as deleted). But if a DeleteCommand is published followed by a ModifyCommand right after it, the delete command will produce the DeletedEvent, but when the ModifyCommand is processed, the loaded state from the state store might not reflect that yet and conflicting events will be published.
I don't mind sacrificing command processing throughput, I'd rather get the consistency guarantees (since everything is grouped by the same key and should end up in the same partition)
Hope that was clear :) Any suggestions?
I don't think Kafka is good for CQRS and Event sourcing yet, the way you described it, because it lacks a (simple) way of ensuring protection from concurrent writes. This article talks about this in details.
What I mean by the way you described it is the fact that you expect a command to generate zero or more events or to fail with an exception; this is the classical CQRS with Event sourcing. Most of the people expect this kind of Architecture.
You could have Event sourcing however in a different style. Your Command handlers could yield events for every command that is received (i.e. DeleteWasAccepted). Then, an Event handler could eventually handle that Event in an Event sourced way (by rebuilding Aggregate's state from its event stream) and emit other Events (i.e. ItemDeleted or ItemDeletionWasRejected). So, commands are fired-and-forget, sent async, the client does not wait for an immediate response. It waits however for an Event describing the outcome of its command execution.
An important aspect is that the Event handler must process events from the same Aggregate in a serial way (exactly once and in order). This can be implemented using a single Kafka Consumer Group. You can see about this architecture in this video.
Please read this article by my colleague Jesper. Kafka is a great product but actually not a good fit at all for event sourcing
https://medium.com/serialized-io/apache-kafka-is-not-for-event-sourcing-81735c3cf5c
A possible solution I came up with is to implement a sort of optimistic locking mechanism:
Add an expectedVersion field on the commands
Use the KTable Aggregator to increase the version of the aggregate snapshot for each handled event
Reject commands if the expectedVersion doesn't match the snapshot's aggregate version
This seems to provide the semantics I'm looking for

Filter read access events in Debezium

We are using Debezium + PostgreSQL.
Notice that we get 4 types of events for create, read, update and delete - c, r, u and d.
The read type of event is unused for our application. Actually, I could not think of an use case for the 'r' events unless we are doing auditing or mirroring the activities of a transaction.
We are facing difficulties scaling & I suspect it is because of network getting hogged by read type of events.
How do we filter out those events in postgreSQL itself?
I got a clue from one of the contributors to use snapshot.mode. I guess something that has to be done when Debezium creates a snapshot. I am unable to figure out how to do that.
It is likely that your database has existed for some time and contains data and changes that have been purged from the logical decoding logs. If you then start using the Debezium PostgreSQL connector to start capturing changes into Kafka, the question becomes what a consumer of the events in Kafka should be able to see.
One scenario is that a consumer should be able to see events for all rows in the database, even those that existed prior to the start of CDC. For example, this allows a consumer to completely reproduce/replicate all of the existing data and keep that data in sync over time. To accomplish this, the Debezium PostgreSQL connector starts up can begin by creating a snapshot of the database contents before it starts capturing the changes. This is done atomically, so that even if the snapshot process takes a while to run, the connector will still see all of the events that occurred since the snapshot process was started. These events are represented as "read" events, since in effect the connector is simply reading the existing rows. However, they are identical to "insert" events, so any application could treat reads and inserts in the same way.
On the other hand, if consumers of the events in Kafka do not need to see events for all existing rows, then the connector can be configured to avoid the snapshot and to instead begin by capturing the changes. This may be useful in some scenarios where the entire database state need not be found in Kafka, but instead the goal is to simply capture the changes that are occurring.
The Debezium PostgreSQL connector will work either way, so you should use the approach that works for how you're consuming the events.