Macro want to use symbol instead of string in clojure - macros

So trying to make something like the haskell lambda syntax, and with a macro this is what I've got:
(defmacro / [& all]
(let [args (take-while #(not (= %1 "=>")) all)
argCount (count args)
expr (last (split-at (+ argCount 1) all))]
`(fn ~(vec args) (~#expr))))
(reduce (/ x y "=>" + x y) [1 2 3])
This works well enough, but the last thing I'd like to do is make it so I don't need the "=>" but can just use =>
Any tips how I might make => a valid symbol that I can just parse in the context as I'm referring?

Compare the name of the symbol against the string:
(defmacro / [& all]
(let [args (take-while #(not (= (name %1) "=>")) all)
argCount (count args)
expr (last (split-at (+ argCount 1) all))]
`(fn ~(vec args) (~#expr))))

Related

Common Lisp macro let-curry - not working

I found myself calling lots of methods whose first argument is a complex object from a given class.
Whilst with-slots and with-accessors are useful, generic methods cannot be bound in this way. So I thought: if we could locally curry any functions, slots + accessors + generic functions + functions could all be addressed with the same construct.
Example of code I want to clean up:
(defun clox-string (scanner)
"Parse string into a token and add it to tokens"
(loop while (and (char/= #\" (peek scanner))
(not (at-end-p scanner)))
do
(if (char= #\Newline (peek scanner)) (incf (line scanner))
(advance scanner)))
(when (at-end-p scanner)
(clox.error::clox-error (line scanner) "Unterminated string.")
(return-from clox-string nil))
(advance scanner) ;; consume closing "
(add-token scanner 'STRING (subseq (source scanner)
(1+ (start scanner))
(1- (current scanner)))))
This would be cleaner (I'm imitating this in CL https://craftinginterpreters.com/scanning.html#reserved-words-and-identifiers but I often end up with more verbose and less readable code than in Java - specially when using this classes a lot). As in CL methods don't belong to classes you end up declaring such arguments over and over. This would be a bit better:
(defun clox-string (scanner)
"Parse string into a token and add it to tokens"
(let-curry scanner (peek at-end-p line source start current advance add-token)
(loop while (and (char/= #\" (peek))
(not (at-end-p)))
do
(if (char= #\Newline (peek)) (incf (line))
(advance)))
(when (at-end-p)
(clox.error::clox-error (line) "Unterminated string.")
(return-from clox-string nil))
(advance) ;; consume closing "
(add-token 'STRING (subseq (source)
(1+ (start))
(1- (current)))))
sketch of macro (not working):
;; Clearly not as I don't understand macros very well :) non-working code:
(defmacro let-curry (obj functions &body body)
"Locally curry all functions"
(let ((fn (gensym)))
`(flet (loop
for ,fn in ,functions
collect (list ,fn (&rest args)
(funcall ,fn ,obj args)))
,#body)))
EDIT (ADD): Notice that scanner is a class; start, source, line, etc., accessors to the slots with the same name; add-token a generic function of more than one argument, advance a generic method of one argument:
(defclass scanner ()
((source
:initarg :source
:accessor source)
...
(...)))
(defmethod advance ((scanner scanner)) ...)
(defmethod add-token ((scanner scanner) token-type) ...)
Simpler Example with error:
;; With
(defun add (x y) (+ x y))
(defun mul (x y) (* x y))
;; I want to have this:
(let-curry 1000 (add mul)
(print (add 3))
(print (mul 3)))
;; expanding to:
(flet ((add (y) (add 1000 y))
(mul (y) (mul 1000 y)))
(print (add 3))
(print (mul 3)))
;; but instead I'm getting:
Execution of a form compiled with errors.
Form:
(FLET (LOOP
FOR
#1=#:G777
IN
(ADD MUL
)
COLLECT
(LIST #1#
(&REST ARGS)
(FUNCALL #1# 1000 ARGS)))
(PRINT (ADD 3))
(PRINT (MUL 3)))
Compile-time error:
The FLET definition spec LOOP is malformed.
[Condition of type SB-INT:COMPILED-PROGRAM-ERROR]
Thanks! The basic question is: is it possible to make such macro work?
Your version didn't expand to what you wanted but:
(flet (loop for #:g8307 in (add mul) collect (list #:g8307 (&rest args) (funcall #:g8307 1000 args)))
(print (add 3)) (print (mul 3)))
Now the loop needs to be done at macro expansion time.
Here is a working version:
(defmacro let-curry (obj (&rest functions) &body body)
"Locally curry all functions"
`(flet ,(loop for fn in functions
collect `(,fn (&rest args)
(apply #',fn ,obj args)))
,#body))
;; test it using add and mul from OP
(macroexpand-1 '(let-curry 10 (add mul) (list (add 5) (mul 5))))
;; ==>
(flet ((add (&rest args) (apply #'add 10 args))
(mul (&rest args) (apply #'mul 10 args)))
(list (add 5) (mul 5)))
(let-curry 10 (add mul) (list (add 5) (mul 5)))
;; ==> (15 50)
Using gensym is only needed if you are in danger of shadowing/colliding something or to ensure evaluation order is least surprising, but in your case you actually want to shadow the original names with the curried version so it makes sense to just use the original name.
If you want to have more than one argument you should use apply
since you know the function is in the function namespace you need to call #'symbol instead of symbol.
I've done (&rest functions) instead of functions in the prototype that with bad usage (not a list) you get a compile time error and it is more preciese.

lisp macro to build a list of an expression and it's evaluation

I'm trying to write a macro in Common Lisp that takes any number of expressions and builds a list containing each expression followed by its evaluation in a single line. For example, if I name my macro as
(defmacro list-builder (&rest exp)
...)
and I run
(let ((X 1) (Y 2)) (list-builder (+ X Y) (- Y X) X))
I want it to return:
'((+ X Y) 3 (- Y X) 1 X 1)
The best I've been able to do so far is get a list of the expressions using the code
(defmacro list-builder (&rest exp)
`',#`(',exp ,exp))
INPUT: (let ((X 1) (Y 2)) (list-builder (+ X Y) (+ Y X) X))
'((+ X Y) (+ Y X) X)
Strictly speaking, the macro itself cannot do that; what the macro must do is generate code in which the argument expressions are embedded in such a way that they are evaluated, and also in such a way that they are quoted.
Given (list-builder (+ x y) (+ y x) x) we would like to generate this code: (list '(+ x y) (+ x y) '(+ y x) (+ y x) 'x x).
We can split the macro into an top-level wrapper defined with defmacro and an expander function that does the bulk of the work of producing the list arguments; The macro's body just sticks the list symbol on it and returns it.
Macro helper functions have to be wrapped with a little eval-when dance in Common Lisp to make sure they are available in all conceivable situations that the macro might be processed:
(eval-when (:compile-toplevel :load-toplevel :execute)
(defun list-builder-expander (exprs)
(cond
((null exprs) nil)
((atom exprs) (error "list-builder: dotted syntax unsupported":))
(t (list* `',(car exprs) (car exprs)
(list-builder-expander (cdr exprs)))))))
(defmacro list-builder (&rest exprs)
(cons 'list (list-builder-expander exprs)))
A "slick" implementation, all in one defmacro, inside a single backquote expression, might go like this:
(defmacro list-builder (&rest exprs)
`(list ,#(mapcan (lambda (expr) (list `',expr expr)) exprs)))
The "dotted syntax unsupported" check we implemented before now becomes an error out of mapcan.
The lambda turns each expression E into the list ((quote E) E). mapcan catenates these lists together to form the arguments for list, which are then spliced into the (list ...) form with ,#.
The form `',expr follows from applying the quote shorthand to `(quote ,expr).
Of course, a lisp macro can do that. Since lisp macros provide full control over evaluation of their arguments.
You have to use macro helper functions only in cases in which you want to use recursion. Since macros have problems to call themselves recursively.
But by looping over the &rest rest argument, you can generate variadic macros (macros with arbitrary number of arguments) and still control the evaluation of each of its arguments.
After some trial and error cycles (macro construction is an incremental procedure, since macros are complex structures), I obtained the
"simpler" solution:
(defmacro list-builder (&rest rest)
`(list ,#(loop for x in `,rest
nconcing (list `',x x))))
Test by:
(let ((X 1)
(Y 2))
(list-builder (+ X Y) (- Y X) X))
;; ((+ X Y) 3 (- Y X) 1 X 1)
Sometimes, in loop constructs, instead of collect/collecting, use nconc/nconcing in combination with (list ...) to have more control over how the elements are consed together.
The
(list `',x x)
ensures, that the second x gets evaluated, while the first
`',x
places the content of x into the expression, while its quoting prevents the evluation of the expression placed for x.
The outer list in combination with the splicing of the loop construct into it,
finally captures (prevents) the intrinsic very final evaluation of the macro body.
(defmacro list-builder (&rest args)
`(let ((lst ',args)
(acc nil))
(dolist (v lst)
(push v acc)
(push (eval v) acc))
(nreverse acc)))
We could create the list builder macro to take rest parameters as you did (I simply renamed them as args for pseudo code). I'd create a quoted list (lst) of the expressions within the list, and an empty list (acc) to store the expressions and whatever they evaluate to later. Then we can use dolist to iterate through our list and push each expression to the list, followed by whatever it evaluates to by running eval on the expression. Then we can finally use nreverse to get the correct order for the list.
We can then call it:
(let ((x 1)
(y 2))
(declare (special x))
(declare (special y))
(list-builder (+ x y) (- y x) x))
The result will be:
((+ X Y) 3 (- Y X) 1 X 1)
CL-USER>

Simplify symbolic expressions

I am new in Lisp and i need some help.
I need to simplify next expressions:
from (+ (+ A B) C) to (+ A B C)
and from (- (- A B) C) to (- A B C).
If you could help me with one of them I'll understand how i need to do this to the next one.
Thanks a lot.
Assuming you have an input that matches this pattern, (+ e1 ... en), you want to recursively simplify all e1 to en, which gives you s1, ..., sn, and then extract all the si that start with a + to move their arguments one level up, to the simplified expression you are building.
An expression e matches the above pattern if (and (consp e) (eq '+ (car e))).
Then, all the ei are just given by the list that is (cdr e).
Consider the (+) case, how could you simplify it?
To apply a function f to a list of values, call (mapcar #'f list).
To split a list into two lists, based on a predicate p, you might use a loop:
(let ((sat nil) (unsat nil))
(dolist (x list (values sat unsat))
(if (funcall predicate x)
(push x sat)
(push x unsat))))
There is a purely functional way to write this, can you figure it out?
Here is a trivial simplifier written in Racket, with an implementation of a rather mindless simplifier for +. Note that this is not intended as anything serious: it's just what I typed in when I was thinking about this question.
This uses Racket's pattern matching, probably in a naïve way, to do some of the work.
(define/match (simplify expression)
;; simplifier driver
(((cons op args))
;; An operator with some arguments
;; Note that this assumes that the arguments to operators are always
;; expressions to simplify, so the recursive level can be here
(simplify-op op (map simplify args)))
((expr)
;; anything else
expr))
(define op-table (make-hash))
(define-syntax-rule (define-op-simplifier (op args) form ...)
;; Define a simplifier for op with arguments args
(hash-set! op-table 'op (λ (args) form ...)))
(define (simplify-op op args)
;; Note the slightly arcane fallback: you need to wrap it in a thunk
;; so hash-ref does not try to call it.
((hash-ref op-table op (thunk (λ (args) (cons op args)))) args))
(define-op-simplifier (+ exprs)
;; Simplify (+ ...) by flattening + in its arguments
(let loop ([ftail exprs]
[results '()])
(if (null? ftail)
`(+ ,#(reverse results))
(loop (rest ftail)
(match (first ftail)
[(cons '+ addends)
(append (reverse addends) results)]
[expr (cons expr results)])))))
It is possible to be more aggressive than this. For instance we can coalesce runs of literal numbers, so we can simplify (+ 1 2 3 a 4) to
(+ 6 a 4) (note it is not safe in general to further simplify this to (+ 10 a) unless all arithmetic is exact). Here is a function which does this coalescing for for + and *:
(define (coalesce-literal-numbers f elts)
;; coalesce runs of literal numbers for an operator f.
;; This relies on the fact that (f) returns a good identity for f
;; (so in particular it returns an exact number). Thisis true for Racket
;; and CL and I think any Lisp worth its salt.
;;
;; Note that it's important here that (eqv? 1 1.0) is false.
;;;
(define id (f))
(let loop ([tail elts]
[accum id]
[results '()])
(cond [(null? tail)
(if (not (eqv? accum id))
(reverse (cons accum results))
(reverse results))]
[(number? (first tail))
(loop (rest tail)
(f accum (first tail))
results)]
[(eqv? accum id)
(loop (rest tail)
accum
(cons (first tail) results))]
[else
(loop (rest tail)
id
(list* (first tail) accum results))])))
And here is a modified simplifier for + which uses this. As well as coalescing it notices that (+ x) can be simplified to x.
(define-op-simplifier (+ exprs)
;; Simplify (+ ...) by flattening + in its arguments
(let loop ([ftail exprs]
[results '()])
(if (null? ftail)
(let ([coalesced (coalesce-literal-numbers + (reverse results))])
(match coalesced
[(list something)
something]
[exprs
`(+ ,#exprs)]))
(loop (rest ftail)
(match (first ftail)
[(cons '+ addends)
(append (reverse addends) results)]
[expr (cons expr results)])))))
Here is an example of using this enhanced simplifier:
> (simplify 'a)
'a
> (simplify 1)
1
> (simplify '(+ 1 a))
'(+ 1 a)
> (simplify '(+ a (+ b c)))
'(+ a b c)
> (simplify '(+ 1 (+ 3 c) 4))
'(+ 4 c 4)
> (simplify '(+ 1 2 3))
6
For yet more value you can notice that the simplifier for * is really the same, and change things to this:
(define (simplify-arith-op op fn exprs)
(let loop ([ftail exprs]
[results '()])
(if (null? ftail)
(let ([coalesced (coalesce-literal-numbers fn (reverse results))])
(match coalesced
[(list something)
something]
['()
(fn)]
[exprs
`(,op ,#exprs)]))
(loop (rest ftail)
(match (first ftail)
[(cons the-op addends)
#:when (eqv? the-op op)
(append (reverse addends) results)]
[expr (cons expr results)])))))
(define-op-simplifier (+ exprs)
(simplify-arith-op '+ + exprs))
(define-op-simplifier (* exprs)
(simplify-arith-op '* * exprs))
And now
(simplify '(+ a (* 1 2 (+ 4 5)) (* 3 4) 6 (* b)))
'(+ a 36 b)
Which is reasonably neat.
You can go further than this, For instance when coalescing numbers for an operator you can simply elide sequences of the identity for that operator: (* 1 1 a 1 1 b) can be simplified to (* a b), not (* 1 a 1 b). It may seem silly to do that: who would ever write such an expression, but they can quite easily occur when simplifying complicated expressions.
There is a gist of an elaborated version of this code. It may still be buggy.

creating a macro for iterate in Common Lisp

I am trying to practise creating macros in Common Lisp by creating a simple += macro and an iterate macro. I have managed to create the += macro easily enough and I am using it within my iterate macro, which I am having a couple of issues with. When I try to run my macro with for example
(iterate i 1 5 1 (print (list 'one i)))
(where i is the control variable, 1 is the start value, 5 is the end value, and 1 is the increment value). I receive SETQ: variable X has no value
(defmacro += (x y)
(list 'setf x '(+ x y)))
(defmacro iterate (control beginExp endExp incExp &rest body)
(let ( (end (gensym)) (inc (gensym)))
`(do ( (,control ,beginExp (+= ,control ,inc)) (,end ,endExp) (,inc ,incExp) )
( (> ,control ,end) T)
,# body
)
)
)
I have tried multiple different things to fix it by messing with the , and this error makes me unsure as to whether the problem is with iterate or +=. From what I can tell += works properly.
Check the += expansion to find the error
You need to check the expansion:
CL-USER 3 > (defmacro += (x y)
(list 'setf x '(+ x y)))
+=
CL-USER 4 > (macroexpand-1 '(+= a 1))
(SETF A (+ X Y))
T
The macro expansion above shows that x and y are used, which is the error.
We need to evaluate them inside the macro function:
CL-USER 5 > (defmacro += (x y)
(list 'setf x (list '+ x y)))
+=
CL-USER 6 > (macroexpand-1 '(+= a 1))
(SETF A (+ A 1))
T
Above looks better. Note btw. that the macro already exists in standard Common Lisp. It is called incf.
Note also that you don't need it, because the side-effect is not needed in your iterate code. We can just use the + function without setting any variable.
Style
You might want to adjust a bit more to Lisp style:
no camelCase -> default reader is case insensitive anyway
speaking variable names -> improves readability
documentation string in the macro/function - improves readability
GENSYM takes an argument string -> improves readability of generated code
no dangling parentheses and no space between parentheses -> makes code more compact
better and automatic indentation -> improves readability
the body is marked with &body and not with &rest -> improves automatic indentation of the macro forms using iterate
do does not need the += macro to update the iteration variable, since do updates the variable itself -> no side-effects needed, we only need to compute the next value
generally writing a good macro takes a bit more time than writing a normal function, because we are programming on the meta-level with code generation and there is more to think about and a few basic pitfalls. So, take your time, reread the code, check the expansions, write some documentation, ...
Applied to your code, it now looks like this:
(defmacro iterate (variable start end step &body body)
"Iterates VARIABLE from START to END by STEP.
For each step the BODY gets executed."
(let ((end-variable (gensym "END"))
(step-variable (gensym "STEP")))
`(do ((,variable ,start (+ ,variable ,step-variable))
(,end-variable ,end)
(,step-variable ,step))
((> ,variable ,end-variable) t)
,#body)))
In Lisp the first part - variable, start, end, step - usually is written in a list. See for example DOTIMES. This makes it for example possible to make step optional and to give it a default value:
(defmacro iterate ((variable start end &optional (step 1)) &body body)
"Iterates VARIABLE from START to END by STEP.
For each step the BODY gets executed."
(let ((end-variable (gensym "END"))
(step-variable (gensym "STEP")))
`(do ((,variable ,start (+ ,variable ,step-variable))
(,end-variable ,end)
(,step-variable ,step))
((> ,variable ,end-variable) t)
,#body)))
Let's see the expansion, formatted for readability. We use the function macroexpand-1, which does the macro expansion only one time - not macro expanding the generated code.
CL-USER 10 > (macroexpand-1 '(iterate (i 1 10 2)
(print i)
(print (* i 2))))
(DO ((I 1 (+ I #:STEP2864))
(#:END2863 10)
(#:STEP2864 2))
((> I #:END2863) T)
(PRINT I)
(PRINT (* I 2)))
T
You can see that the symbols created by gensym are also identifiable by their name.
We can also let Lisp format the generated code, using the function pprint and giving a right margin.
CL-USER 18 > (let ((*print-right-margin* 40))
(pprint
(macroexpand-1
'(iterate (i 1 10 2)
(print i)
(print (* i 2))))))
(DO ((I 1 (+ I #:STEP2905))
(#:END2904 10)
(#:STEP2905 2))
((> I #:END2904) T)
(PRINT I)
(PRINT (* I 2)))
I figured it out. Turns out I had a problem in my += macro and a couple of other places in my iterate macro. This is the final working result. I forgot about the , while i was writing the += macro. The other macro declerations where out of order.
(defmacro += (x y)
`(setf ,x (+ ,x ,y)))
(defmacro iterate2 (control beginExpr endExpr incrExpr &rest bodyExpr)
(let ((incr(gensym))(end(gensym)) )
`(do ((,incr ,incrExpr)(,end ,endExpr)(,control ,beginExpr(+= ,control ,incr)))
((> ,control ,end) T)
,# bodyExpr
)
)
)

Catch-22 situation with Common Lisp macros

Often when I try to write a macro, I run up against the following difficulty: I need one form that is passed to the macro to be evaluated before being processed by a helper function that is invoked while generating the macro's expansion. In the following example, we are only interested in how we could write a macro to emit the code we want, and not in the uselessness of the macro itself:
Imagine (bear with me) a version of Common Lisp's lambda macro, where only the number of arguments is important, and the names and order of the arguments are not. Let's call it jlambda. It would be used like so:
(jlambda 2
...body)
where 2 is the arity of the function returned. In other words, this produces a binary operator.
Now imagine that, given the arity, jlambda produces a dummy lambda-list which it passes to the actual lambda macro, something like this:
(defun build-lambda-list (arity)
(assert (alexandria:non-negative-integer-p arity))
(loop for x below arity collect (gensym)))
(build-lambda-list 2)
==> (#:G15 #:G16)
The expansion of the above call to jlambda will look like this:
(lambda (#:G15 #:16)
(declare (ignore #:G15 #:16))
…body))
Let's say we need the jlambda macro to be able to receive the arity value as a Lisp form that evaluates to a non-negative integer (as opposed to receiving a non-negative integer directly) eg:
(jlambda (+ 1 1)
...body)
The form (+ 1 1) needs to be evaluated, then the result needs to be passed to build-lambda-list and that needs to be evaluated, and the result of that is inserted into the macro expansion.
(+ 1 1)
=> 2
(build-lambda-list 2)
=> (#:G17 #:18)
(jlambda (+ 1 1) ...body)
=> (lambda (#:G19 #:20)
(declare (ignore #:G19 #:20))
…body))
So here's a version of jlambda that works when the arity is provided as a number directly, but not when it's passed as a form to be evaluated:
(defun jlambda-helper (arity)
(let ((dummy-args (build-lambda-list arity)))
`(lambda ,dummy-args
(declare (ignore ,#dummy-args))
body)))
(defmacro jlambda (arity &body body)
(subst (car body) 'body (jlambda-helper arity)))
(jlambda 2 (print “hello”)) ==> #<anonymous-function>
(funcall *
'ignored-but-required-argument-a
'ignored-but-required-argument-b)
==> “hello”
“hello”
(jlambda (+ 1 1) (print “hello”)) ==> failed assertion in build-lambda-list, since it receives (+ 1 1) not 2
I could evaluate the (+ 1 1) using the sharp-dot read macro, like so:
(jlambda #.(+ 1 1) (print “hello”)) ==> #<anonymous-function>
But then the form cannot contain references to lexical variables, since they are not available when evaluating at read-time:
(let ((x 1))
;; Do other stuff with x, then:
(jlambda #.(+ x 1) (print “hello”))) ==> failure – variable x not bound
I could quote all body code that I pass to jlambda, define it as a function instead, and then eval the code that it returns:
(defun jlambda (arity &rest body)
(let ((dummy-args (build-lambda-list arity)))
`(lambda ,dummy-args
(declare (ignore ,#dummy-args))
,#body)))
(eval (jlambda (+ 1 1) `(print “hello”))) ==> #<anonymous-function>
But I can't use eval because, like sharp-dot, it throws out the lexical environment, which is no good.
So jlambda must be a macro, because I don't want the function body code evaluated until the proper context for it has been established by jlambda's expansion; however it must also be a function, because I want the first form (in this example, the arity form) evaluated before passing it to helper functions that generate the macro expansion. How do I overcome this Catch-22 situation?
EDIT
In response to #Sylwester 's question, here's an explanation of the context:
I'm writing something akin to an “esoteric programming language”, implemented as a DSL in Common Lisp. The idea (admittedly silly but potentially fun) is to force the programmer, as far as possible (I'm not sure how far yet!), to write exclusively in point-free style. To do this, I will do several things:
Use curry-compose-reader-macros to provide most of the functionality required to write in point-free style in CL
Enforce functions' arity – i.e. override CL's default behaviour that allows functions to be variadic
Instead of using a type system to determine when a function has been “fully applied” (like in Haskell), just manually specify a function's arity when defining it.
So I'll need a custom version of lambda for defining a function in this silly language, and – if I can't figure that out - a custom version of funcall and/or apply for invoking those functions. Ideally they'll just be skins over the normal CL versions that change the functionality slightly.
A function in this language will somehow have to keep track of its arity. However, for simplicity, I would like the procedure itself to still be a funcallable CL object, but would really like to avoid using the MetaObject Protocol, since it's even more confusing to me than macros.
A potentially simple solution would be to use a closure. Every function could simply close over the binding of a variable that stores its arity. When invoked, the arity value would determine the exact nature of the function application (i.e. full or partial application). If necessary, the closure could be “pandoric” in order to provide external access to the arity value; that could be achieved using plambda and with-pandoric from Let Over Lambda.
In general, functions in my language will behave like so (potentially buggy pseudocode, purely illustrative):
Let n be the number of arguments provided upon invocation of the function f of arity a.
If a = 0 and n != a, throw a “too many arguments” error;
Else if a != 0 and 0 < n < a, partially apply f to create a function g, whose arity is equal to a – n;
Else if n > a, throw a “too many arguments” error;
Else if n = a, fully apply the function to the arguments (or lack thereof).
The fact that the arity of g is equal to a – n is where the problem with jlambda would arise: g would need to be created like so:
(jlambda (- a n)
...body)
Which means that access to the lexical environment is a necessity.
This is a particularly tricky situation because there's no obvious way to create a function of a particular number of arguments at runtime. If there's no way to do that, then it's probably easiest to write a a function that takes an arity and another function, and wraps the function in a new function that requires that is provided the particular number of arguments:
(defun %jlambda (n function)
"Returns a function that accepts only N argument that calls the
provided FUNCTION with 0 arguments."
(lambda (&rest args)
(unless (eql n (length args))
(error "Wrong number of arguments."))
(funcall function)))
Once you have that, it's easy to write the macro around it that you'd like to be able to:
(defmacro jlambda (n &body body)
"Produces a function that takes exactly N arguments and and evalutes
the BODY."
`(%jlambda ,n (lambda () ,#body)))
And it behaves roughly the way you'd want it to, including letting the arity be something that isn't known at compile time.
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2 3))
HELLO
HELLO
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2))
; Evaluation aborted on #<SIMPLE-ERROR "Wrong number of arguments." {1004B95E63}>.
Now, you might be able to do something that invokes the compiler at runtime, possibly indirectly, using coerce, but that won't let the body of the function be able to refer to variables in the original lexical scope, though you would get the implementation's wrong number of arguments exception:
(defun %jlambda (n function)
(let ((arglist (loop for i below n collect (make-symbol (format nil "$~a" i)))))
(coerce `(lambda ,arglist
(declare (ignore ,#arglist))
(funcall ,function))
'function)))
(defmacro jlambda (n &body body)
`(%jlambda ,n (lambda () ,#body)))
This works in SBCL:
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2 3))
HELLO
CL-USER> (let ((a 10) (n 7))
(funcall (jlambda (- a n)
(print 'hello))
1 2))
; Evaluation aborted on #<SB-INT:SIMPLE-PROGRAM-ERROR "invalid number of arguments: ~S" {1005259923}>.
While this works in SBCL, it's not clear to me whether it's actually guaranteed to work. We're using coerce to compile a function that has a literal function object in it. I'm not sure whether that's portable or not.
NB: In your code you use strange quotes so that (print “hello”) doesn't actually print hello but the whatever the variable “hello” evaluates to, while (print "hello") does what one would expect.
My first question is why? Usually you know how many arguments you are taking compile time or at least you just make it multiple arity. Making an n arity function only gives you errors when passwd with wrong number of arguments as added feature with the drawback of using eval and friends.
It cannot be solved as a macro since you are mixing runtime with macro expansion time. Imagine this use:
(defun test (last-index)
(let ((x (1+ last-index)))
(jlambda x (print "hello"))))
The macro is expanded when this form is evaluated and the content replaced before the function is assigned to test. At this time x doesn't have any value whatsoever and sure enough the macro function only gets the symbols so that the result need to use this value. lambda is a special form so it again gets expanded right after the expansion of jlambda, also before any usage of the function.
There is nothing lexical happening since this happens before the program is running. It could happen before loading the file with compile-file and then if you load it will load all forms with the macros already expanded beforehand.
With compile you can make a function from data. It is probably as evil as eval is so you shouldn't be using it for common tasks, but they exist for a reason:
;; Macro just to prevent evaluation of the body
(defmacro jlambda (nexpr &rest body)
`(let ((dummy-args (build-lambda-list ,nexpr)))
(compile nil (list* 'lambda dummy-args ',body))))
So the expansion of the first example turns into this:
(defun test (last-index)
(let ((x (1+ last-index)))
(let ((dummy-args (build-lambda-list x)))
(compile nil (list* 'lambda dummy-args '((print "hello")))))))
This looks like it could work. Lets test it:
(defparameter *test* (test 10))
(disassemble *test*)
;Disassembly of function nil
;(CONST 0) = "hello"
;11 required arguments <!-- this looks right
;0 optional arguments
;No rest parameter
;No keyword parameters
;4 byte-code instructions:
;0 (const&push 0) ; "hello"
;1 (push-unbound 1)
;3 (calls1 142) ; print
;5 (skip&ret 12)
;nil
Possible variations
I've made a macro that takes a literal number and makes bound variables from a ... that can be used in the function.
If you are not using the arguments why not make a macro that does this:
(defmacro jlambda2 (&rest body)
`(lambda (&rest #:rest) ,#body))
The result takes any number of arguments and just ignores it:
(defparameter *test* (jlambda2 (print "hello")))
(disassemble *test*)
;Disassembly of function :lambda
;(CONST 0) = "hello"
;0 required arguments
;0 optional arguments
;Rest parameter <!-- takes any numer of arguments
;No keyword parameters
;4 byte-code instructions:
;0 (const&push 0) ; "hello"
;1 (push-unbound 1)
;3 (calls1 142) ; print
;5 (skip&ret 2)
;nil
(funcall *test* 1 2 3 4 5 6 7)
; ==> "hello" (prints "hello" as side effect)
EDIT
Now that I know what you are up to I have an answer for you. Your initial function does not need to be runtime dependent so all functions indeed have a fixed arity, so what we need to make is currying or partial application.
;; currying
(defmacro fixlam ((&rest args) &body body)
(let ((args (reverse args)))
(loop :for arg :in args
:for r := `(lambda (,arg) ,#body)
:then `(lambda (,arg) ,r)
:finally (return r))))
(fixlam (a b c) (+ a b c))
; ==> #<function :lambda (a) (lambda (b) (lambda (c) (+ a b c)))>
;; can apply multiple and returns partially applied when not enough
(defmacro fixlam ((&rest args) &body body)
`(let ((lam (lambda ,args ,#body)))
(labels ((chk (args)
(cond ((> (length args) ,(length args)) (error "too many args"))
((= (length args) ,(length args)) (apply lam args))
(t (lambda (&rest extra-args)
(chk (append args extra-args)))))))
(lambda (&rest args)
(chk args)))))
(fixlam () "hello") ; ==> #<function :lambda (&rest args) (chk args)>
;;Same but the zero argument functions are applied right away:
(defmacro fixlam ((&rest args) &body body)
`(let ((lam (lambda ,args ,#body)))
(labels ((chk (args)
(cond ((> (length args) ,(length args)) (error "too many args"))
((= (length args) ,(length args)) (apply lam args))
(t (lambda (&rest extra-args)
(chk (append args extra-args)))))))
(chk '()))))
(fixlam () "hello") ; ==> "hello"
If all you want is lambda functions that can be applied either partially or fully, I don't think you need to pass the amount of parameters explicitly. You could just do something like this (uses Alexandria):
(defmacro jlambda (arglist &body body)
(with-gensyms (rest %jlambda)
`(named-lambda ,%jlambda (&rest ,rest)
(cond ((= (length ,rest) ,(length arglist))
(apply (lambda ,arglist ,#body) ,rest))
((> (length ,rest) ,(length arglist))
(error "Too many arguments"))
(t (apply #'curry #',%jlambda ,rest))))))
CL-USER> (jlambda (x y) (format t "X: ~s, Y: ~s~%" x y))
#<FUNCTION (LABELS #:%JLAMBDA1046) {1003839D6B}>
CL-USER> (funcall * 10) ; Apply partially
#<CLOSURE (LAMBDA (&REST ALEXANDRIA.0.DEV::MORE) :IN CURRY) {10038732DB}>
CL-USER> (funcall * 20) ; Apply fully
X: 10, Y: 20
NIL
CL-USER> (funcall ** 100) ; Apply fully again
X: 10, Y: 100
NIL
CL-USER> (funcall *** 100 200) ; Try giving a total of 3 args
; Debugger entered on #<SIMPLE-ERROR "Too many arguments" {100392D7E3}>
Edit: Here's also a version that lets you specify the arity. Frankly, I don't see how this could possibly be useful though. If the user cannot refer to the arguments, and nothing is done with them automatically, then, well, nothing is done with them. They might as well not exist.
(defmacro jlambda (arity &body body)
(with-gensyms (rest %jlambda n)
`(let ((,n ,arity))
(named-lambda ,%jlambda (&rest ,rest)
(cond ((= (length ,rest) ,n)
,#body)
((> (length ,rest) ,n)
(error "Too many arguments"))
(t (apply #'curry #',%jlambda ,rest)))))))
CL-USER> (jlambda (+ 1 1) (print "hello"))
#<CLOSURE (LABELS #:%JLAMBDA1085) {1003B7913B}>
CL-USER> (funcall * 2)
#<CLOSURE (LAMBDA (&REST ALEXANDRIA.0.DEV::MORE) :IN CURRY) {1003B7F7FB}>
CL-USER> (funcall * 5)
"hello"
"hello"
Edit2: If I understood correctly, you might be looking for something like this (?):
(defvar *stack* (list))
(defun jlambda (arity function)
(lambda ()
(push (apply function (loop repeat arity collect (pop *stack*)))
*stack*)))
CL-USER> (push 1 *stack*)
(1)
CL-USER> (push 2 *stack*)
(2 1)
CL-USER> (push 3 *stack*)
(3 2 1)
CL-USER> (push 4 *stack*)
(4 3 2 1)
CL-USER> (funcall (jlambda 4 #'+)) ; take 4 arguments from the stack
(10) ; and apply #'+ to them
CL-USER> (push 10 *stack*)
(10 10)
CL-USER> (push 20 *stack*)
(20 10 10)
CL-USER> (push 30 *stack*)
(30 20 10 10)
CL-USER> (funcall (jlambda 3 [{reduce #'*} #'list])) ; pop 3 args from
(6000 10) ; stack, make a list
; of them and reduce
; it with #'*