traits with immutable paramiters in scala - scala

I want to make the following example so that Collar is immutable
trait Collar{
var text:String="";
}
class dog(val name:String){
def bark()= ...
}
val snoopy = new dog("snoopy") with Collar;
snoopy.text="charley's dog";
println(snoopy.text)
However when I try something like
trait Collar(val text:String){
}
I get the compile time error
traits or objects may not have parameters
Is there currently a a way to do this? If not, why not?
Remember, a good dog shouldn't care when it has a Collar.

Not at all sure what your real question is, but perhaps this is what you're looking for:
trait Collar{
val tagText: String // 'val', not 'var'; left undefined here
}
class Dog(val name:String) {
def bark()= ...
}
val snoopy = new Dog("snoopy") with Collar {
val tagText= "charley's dog"
}
println(snoopy.tagText)
Alternatively, Collar.tagText can be set with an initial/default value AND also be overridden where Dog is instantiated.

Related

Need to Reference Trait on Companion Object From Trait on Case Class

I need to access a companion class with a specified trait -- from a trait intended for case classes. I am almost certain that the Scala reflection library can accomplish this but I haven't quite been able to piece it together.
I created test code below that requires one section of ??? be filled in with some reflection magic. The code compiles and runs as is -- with a notification due to the missing functionality.
Some related answers that I have seen on StackOverflow were from 2.10. Scala 2.12 compatible please.
import scala.reflect.{ClassTag, classTag}
//for companion object
//accesses Fields of the associated case class to ensure the correctness
//note: abstract class -- not a trait due to issues using ClassTag on a trait
abstract class SupportsField1Companion[T: ClassTag] {
//gets the names of all Fields on the associated case class
val fieldNamesOfInstancedClass: Array[String] =
classTag[T].runtimeClass.getDeclaredFields.map(_.getName)
//prints the name and fields of the associated case class -- plus extra on success
def printFieldNames(extra: String = ""): Unit = {
val name = classTag[T].runtimeClass.getCanonicalName
val fields = fieldNamesOfInstancedClass.reduceLeft(_ + ", " + _)
println(s"Fields of $name: $fields" + extra)
}
}
//for case classes
//IMPORTANT -- please do not parameterize this if possible
trait SupportsField1 {
//some data for printing
val field1: String = this.getClass.getCanonicalName + ": field1"
//should get a reference to the associated companion object as instance of SupportsFieldsCompanion
def getSupportsFieldsCompanion: SupportsField1Companion[this.type] = //this.type may be wrong
??? //TODO reflection magic required -- need functionality to retrieve companion object cast as type
//calls a function on the associated Companion class
def callPrintFuncOnCompanion(): Unit =
getSupportsFieldsCompanion.printFieldNames(s" -- from ${this.getClass.getCanonicalName}")
}
//two case classes with the SupportsFieldsCompanion trait to ensure data is accessed correctly
object ExampleA extends SupportsField1Companion[ExampleA] {}
case class ExampleA() extends SupportsField1 {
val fieldA: String = "ExampleA: fieldA"
}
object ExampleB extends SupportsField1Companion[ExampleB] {}
case class ExampleB() extends SupportsField1 {
val fieldB: String = "ExampleB: fieldB"
}
object Run extends App {
//create instanced classes and print some test data
val exampleA = ExampleA()
println(exampleA.field1) //prints "ExampleA: field1" due to trait SupportsFields
println(exampleA.fieldA) //prints "ExampleA: fieldA" due to being of class ExampleA
val exampleB = ExampleB()
println(exampleB.field1) //prints "ExampleB: field1" due to trait SupportsFields
println(exampleB.fieldB) //prints "ExampleB: fieldB" due to being of class ExampleB
//via the SupportsFieldsCompanion trait on the companion objects,
//call a function on each companion object to show that each companion is associated with the correct case class
ExampleA.printFieldNames() //prints "Fields of ExampleA: fieldA, field1"
ExampleB.printFieldNames() //prints "Fields of ExampleB: fieldB, field1"
//test access of printFieldNames on companion object from instanced class
try {
exampleA.callPrintFuncOnCompanion() //on success, prints "Fields of ExampleA: fieldA, field1 -- from ExampleA"
exampleB.callPrintFuncOnCompanion() //on success, prints "Fields of ExampleB: fieldB, field1 -- from ExampleB"
} catch {
case _: NotImplementedError => println("!!! Calling function on companion(s) failed.")
}
}
There are lots of ways you can do this, but the following is probably one of the simplest that doesn't involve making assumptions about how Scala's companion object class name mangling works:
def getSupportsFieldsCompanion: SupportsField1Companion[this.type] =
scala.reflect.runtime.ReflectionUtils.staticSingletonInstance(
this.getClass.getClassLoader,
this.getClass.getCanonicalName
).asInstanceOf[SupportsField1Companion[this.type]]
This works as desired, but I'd probably type it as SupportsField1Companion[_], and ideally I'd probably avoid having public methods on SupportsField1 that refer to SupportsField1Companion—actually ideally I'd probably avoid this approach altogether, but if you're committed I think the ReflectionUtil solution above is probably reasonable.

Scala - Enumeration with value parametrized

I'm wondering if its possible to have Enumerations with one value parametrized.
Something like:
object Animal extends Enumeration {
val Dog = Value("dog")
val Cat = Value("cat")
val Other = Value(?)
def create(value: String): Animal.Value = {
Animal.values.find(_.toString == value).getOrElse(Other(value))
}
}
And, for use, something like:
create("dog") // will return Animal.Dog
create("giraffe") // will return Animal.Other
create("dog").toString // will return "dog"
create("giraffe").toString // will return "giraffe"
That is, to be able to have some values typed, but to leave one free.
Thanks!!!
Lucas.
I have to apologize for jumping the gun. I was thinking in Java terms, where an enum is a very rigid thing. Scala, however, is a bit more flexible in that regard. Enumeration does not stop us from extending the enumeration class ourselves.
Disclaimer: This is probably not a good idea. It works, but I don't know how it will behave with respect to serialization or the other nice properties that ordinary enumerations have. So if it works for you, great! But I can't promise that it's a good solution.
object Animal extends Enumeration {
val Dog = Value("dog")
val Cat = Value("cat")
def create(value: String): Animal.Value = {
Animal.values.find(_.toString == value).getOrElse(OtherAnimal(value))
}
}
// Extending the enumeration class by hand and giving it a `String` argument.
case class OtherAnimal(name: String) extends Animal.Value {
override def id = -1
override def toString = name
}
println(Animal.create("dog").toString) // dog
println(Animal.create("cat").toString) // cat
println(Animal.create("giraffe").toString) // giraffe

Why does an implicit conversion on the constructor require 'this'?

Consider the following typical Scala 'pimp' code:
class PimpedA(a:A){
def pimp() = "hi"
}
implicit def pimpA(a:A) = new PimpedA(a)
new A(){
pimp() //<--- does not compile
}
However, changing it to:
new A(){
this.pimp()
}
Makes it work.
Shouldn't it be the same to the Scala compiler?
EDIT : Is there any solution that can make it work without having to add the this.?
Not at all. For it to work, pimp needs to be either an object or an imported member of a value, and it is neither. A class has an "implicit" import this._. It has not a mechanism that auto-prepends this to stuff to see if it compiles.
In this case you should give compiler a hint that pimp() is not a random function. When you write
this.pimp()
compiler know there isn't pimp function on class A so it's an error and before giving up it searches implicit conversion in scope and finds it.
pimpA(this).pimp()
And when you just call pimp() compiler doesn't know what object to pass to the pimpA(a: A) implicit function.
UPDATE
It is hard to understand what is your goal. I can only suggest to make PimpedA a typeclass (Pimp[T] in this example).
trait Pimp[T] {
def action(p: T): String
}
implicit object PimpA extends Pimp[A] {
override def action(p: A) = "some actions related to A"
}
def pimp[T: Pimp](p: T) = implicitly[Pimp[T]].action(p)
class A {
val foo = pimp(this)
}
scala> new A foo
res2: String = some actions related to A

Scala mixin to class instance

Is it possible in Scala to make some mixin to class instance?
Eg: I have some MyClass instance var x = new MyClass and I want to extend it on some method or trait without copying it.
[Edit:]
I'm looking the way to extend x after it has been instantiated.
So, for example in a function method, which gets x as a parameter.
[What is behind]
I've just wonder if there is some magic with implicit objects and Manifest to achieve the typeclass pattern without explicit call implicit object (like in Haskell).
But only for single object.
I know if is artificial, but I've just wonder if it's possible because of lot of magic with mixing Scalas features.
you mean like:
val x = new MyClass with MyTrait
Yes you can. Just overriding methods obviously can be:
val x = new MyClass {
override def myMethod = { my implementation }
}
Just came across this problem as I was wondering the same thing...
case class Person(name: String)
val dave = Person("Dave")
val joe = Person("Joe")
trait Dog { val dogName: String }
val spot = new Dog { val dogName = "Spot" }
implicit def daveHasDog(p: dave.type) = spot
dave.dogName //"Spot"
joe.dogName //error: value dogName is not a member of Person
So now the dave instance (rather than all instances of class Person) behaves like a Person with Dog, at long as the implicit is in scope.
This will work in most cases, except where your trait has self-types.
It is not possible. You may look at using the Dynamic trait or Kevin Wright's auto-proxy plugin, but, either way, you'll create a new object that also answers to the original one's method through proxying.

Best way to use type classes with list parametrized with some base class, abstract class or trait

I think it would be easier to describe a problem with concrete example. Suppose I have have Fruit class hierarchy and Show type class:
trait Fruit
case class Apple extends Fruit
case class Orange extends Fruit
trait Show[T] {
def show(target: T): String
}
object Show {
implicit object AppleShow extends Show[Apple] {
def show(apple: Apple) = "Standard apple"
}
implicit object OrangeShow extends Show[Orange] {
def show(orange: Orange) = "Standard orange"
}
}
def getAsString[T](target: T)(implicit s: Show[T]) = s show target
I also have list of fruits that I would like to show to the user using Show (this is my main goal in this question):
val basket = List[Fruit](Apple(), Orange())
def printList[T](list: List[T])(implicit s: Show[T]) =
list foreach (f => println(s show f))
printList(basket)
This will not compile because List is parametrized with Fruit and I have not defined any Show[Fruit]. What is the best way to achieve my goal using type classes?
I tried to find solution for this problem, but unfortunately have not found any nice one yet. It's not enough to know s in printList function - somehow it needs to know Show[T] for each element of the list. This means, that in order to be able to make this, we need some run-time mechanism in addition to the compile-time one. This gave me an idea of some kind of run-time dictionary, that knows, how to find correspondent Show[T] at run-time.
Implementation of implicit Show[Fruit]can serve as such dictionary:
implicit object FruitShow extends Show[Fruit] {
def show(f: Fruit) = f match {
case a: Apple => getAsString(a)
case o: Orange => getAsString(o)
}
}
And actually very similar approach can be found in haskell. As an example, we can look at Eq implementation for Maybe:
instance (Eq m) => Eq (Maybe m) where
Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False
The big problem with this solution, is that if I will add new subclass of Fruit like this:
case class Banana extends Fruit
object Banana {
implicit object BananaShow extends Show[Banana] {
def show(banana: Banana) = "New banana"
}
}
and will try to print my basket:
val basket = List[Fruit](Apple(), Orange(), Banana())
printList(basket)
then scala.MatchError would be thrown because my dictionary does not know anything about bananas yet. Of course, I can provide updated dictionary in some context that knows about bananas:
implicit object NewFruitShow extends Show[Fruit] {
def show(f: Fruit) = f match {
case b: Banana => getAsString(b)
case otherFruit => Show.FruitShow.show(otherFruit)
}
}
But this solution is far from perfect. Just imagine that some other library provides another fruit with it's own version of dictionary. It will just conflict with NewFruitShow if I try to use them together.
Maybe I'm missing something obvious?
Update
As #Eric noticed, there is one more solution described here: forall in Scala . It's really looks very interesting. But I see one problem with this solution.
If I use ShowBox, then it will remember concrete type class during it's creation time. So I generally building list with objects and correspondent type classes (so dictionary in present in the list). From the other hand, scala has very nice feature: I can drop new implicits in the current scope and they will override defaults. So I can define alternative string representation for the classes like:
object CompactShow {
implicit object AppleCompactShow extends Show[Apple] {
def show(apple: Apple) = "SA"
}
implicit object OrangeCompactShow extends Show[Orange] {
def show(orange: Orange) = "SO"
}
}
and then just import it in current scope with import CompactShow._. In this case AppleCompactShow and OrangeCompactShow object would be implicitly used instead of defaults defined in the companion object of Show. And as you can guess, list creation and printing happens in different places. If I will use ShowBox, than most probably I will capture default instances of type class. I would like to capture them at the last possible moment - the moment when I call printList, because I even don't know, whether my List[Fruit] will ever be shown or how it would be shown, in the code that creates it.
The most obvious answer is to use a sealed trait Fruit and a Show[Fruit]. That way your pattern matches will complain at compile time when the match is not exhaustive. Of course, adding a new kind of Fruit in an external library will not be possible, but this is inherent in the nature of things. This is the "expression problem".
You could also stick the Show instance on the Fruit trait:
trait Fruit { self =>
def show: Show[self.type]
}
case class Apple() extends Fruit { self =>
def show: Show[self.type] = showA
}
Or, you know, stop subtyping and use type classes instead.