Let's say that I'm building a stack exchange clone, and every time I examine a question, I also load each and every answer. The table might look like:
id integer
question_id FOREIGN KEY
answer bool
date timestamp
How can I tell django to tell postgres to keep all the answers together for fast access? Postgres has the underlying feature CLUSTER USING.
(CLUSTER USING is 'defragmenting' feature for tables. This works especially well for small records, since they may all end up in the same disk block and greatly reduce load time. The defragmenting is typically done as a batch job at times of low load).
As far as I can tell, you can't. But you can treat this as a database administration task, and do it from the psql command line:
# CLUSTER table USING index_name;
# ANALYZE VERBOSE table;
# CLUSTER VERBOSE;
This will be remembered. Each time you run CLUSTER VERBOSE it will lock all the tables and sort the data. All your answers (in the example above) will be gathered together on disk. This makes sense even for solid state storage, since the eventual database read will cover fewer sectors, meaning fewer I/O operations to retrieve the group.
Obviously you must pick your index well: the wrong choice can scatter the data you actually access. The performance benefit is the best for sparse datasets, and becomes less relevant if most everything is frequently accessed.
A better name for the CLUSTER feature might be "DEFRAG", as this is an operation analogous defragmenting a filesystem.
Related
I am working on a front end system for a radius server.
The radius server will pass updates to the system every 180 seconds. Which means if I have about 15,000 clients that would be around 7,200,000 entries per day...Which is a lot.
I am trying to understand what the best possible way to store and retrieve this data will be. Obviously as time goes on, this will become substantial. Will MongoDB handle this? Typical document is not much, something this
{
id: 1
radiusId: uniqueId
start: 2017-01-01 14:23:23
upload: 102323
download: 1231556
}
However, there will be MANY of these records. I guess this is something similar to the way that SNMP NMS servers handle data which as far as I know they use RRD to do this.
Currently in my testing I just push every document into a single collection. So I am asking,
A) Is Mongo the right tool for the job and
B) Is there a better/more preferred/more optimal way to store the data
EDIT:
OK, so just incase someone comes across this and needs some help.
I ran it for a while in mongo, I was really not satisfied with performance. We can chalk this up to the hardware I was running on, perhaps my level of knowledge or the framework I was using. However I found a solution that works very well for me. InfluxDB pretty much handles all of this right out of the box, its a time series database which is effectively the data I am trying to store (https://github.com/influxdata/influxdb). Performance for me has been like night & day. Again, could all be my fault, just updating this.
EDIT 2:
So after a while I think I figured out why I never got the performance I was after with Mongo. I am using sailsjs as framework and it was searching by id using regex, which obviously has a huge performance hit. I will eventually try migrate back to Mongo instead of influx and see if its better.
15,000 clients updating every 180 seconds = ~83 insertions / sec. That's not a huge load even for a moderately sized DB server, especially given the very small size of the records you're inserting.
I think MongoDB will do fine with that load (also, to be honest, almost any modern SQL DB would probably be able to keep up as well). IMHO, the key points to consider are these:
Hardware: make sure you have enough RAM. This will primarily depend on how many indexes you define, and how many queries you're doing. If this is primarily a log that will rarely be read, then you won't need much RAM for your working set (although you'll need enough for your indexes). But if you're also running queries then you'll need much more resources
If you are running extensive queries, consider setting up a replica set. That way, your master server can be reserved for writing data, ensuring reliability, while your slaves can be configured to serve your queries without affecting the write reliability.
Regarding the data structure, I think that's fine, but it'll really depend on what type of queries you wish to run against it. For example, if most queries use the radiusId to reference another table and pull in a bunch of data for each record, then you might want to consider denormalizing some of that data. But again, that really depends on the queries you run.
If you're really concerned about managing the write load reliably, consider using the Mongo front-end only to manage the writes, and then dumping the data to a data warehouse backend to run queries on. You can partially do this by running a replica set like I mentioned above, but the disadvantage of a replica set is that you can't restructure the data. The data in each member of the replica set is exactly the same (hence the name, replica set :-) Oftentimes, the best structure for writing data (normalized, small records) isn't the best structure for reading data (denormalized, large records with all the info and joins you need already done). If you're running a bunch of complex queries referencing a bunch of other tables, using a true data warehouse for the querying part might be better.
As your write load increases, you may consider sharding. I'm assuming the RadiusId points to each specific server among a pool of Radius servers. You could potentially shard on that key, which would split the writes based on which server is sending the data. Thus, as you increase your radius servers, you can increase your mongo servers proportionally to maintain write reliability. However, I don't think you need to do this right away as I bet one reasonably provisioned server should be able to manage the load you've specified.
Anyway, those are my preliminary suggestions.
Context:
I want to store some temporary results in some temporary tables. These tables may be reused in several queries that may occur close in time, but at some point the evolutionary algorithm I'm using may not need some old tables any more and keep generating new tables. There will be several queries, possibly concurrently, using those tables. Only one user doing all those queries. I don't know if that clarifies everything about sessions and so on, I'm still uncertain about how that works.
Objective:
What I would like to do is to create temporary tables (if they don't exist already), store them on memory as far as that is possible and if at some point there is not enough memory, delete those that would be committed to the HDD (I guess those will be the least recently used).
Examples:
The client will be doing queries for EMAs with different parameters and an aggregation of them with different coefficients, each individual may vary in terms of the coefficients used and so the parameters for the EMAs may repeat as they are still in the gene pool, and may not be needed after a while. There will be similar queries with more parameters and the genetic algorithm will find the right values for the parameters.
Questions:
Is that what "on commit drop" means? I've seen descriptions about
sessions and transactions but I don't really understand those
concepts. Sorry if the question is stupid.
If it is not, do you know about any simple way to get Postgres to do
this?
Workaround:
In the worst case I should be able to make a guesstimation about how many tables I can keep on memory and try to implement the LRU by myself, but it's never going to be as good as what Postgres could do.
Thank you very much.
This is a complicated topic and probably one to discuss in some depth. I think it is worth both explaining why PostgreSQL doesn't support this and also what you can do instead with recent versions to approach what you are trying to do.
PostgreSQL has a pretty good approach to caching diverse data sets across multiple users. In general you don't want to allow a programmer to specify that a temporary table must be kept in memory if it becomes very large. Temporary tables however are managed quite differently from normal tables in that they are:
Buffered by the individual back-end, not the shared buffers
Locally visible only, and
Unlogged.
What this means is that typically you aren't generating a lot of disk I/O for temporary tables. The tables do not normally flush WAL segments, and they are managed by the local back-end so they don't affect shared buffer usage. This means that only occasionally is data going to be written to disk and only when necessary to free memory for other (usually more frequent) tasks. You certainly aren't forcing disk writes and only need disk reads when something else has used up memory.
The end result is that you don't really need to worry about this. PostgreSQL already tries, to a certain extent, to do what you are asking it to do, and temporary tables have much lower disk I/O requirements than standard tables do. It does not force the tables to stay in memory though and if they become large enough, the pages may expire into the OS disk cache, and eventually on to disk. This is an important feature because it ensures that performance gracefully degrades when many people create many large temporary tables.
I'm building a system that tracks and verifies ad impressions and clicks. This means that there are a lot of insert commands (about 90/second average, peaking at 250) and some read operations, but the focus is on performance and making it blazing-fast.
The system is currently on MongoDB, but I've been introduced to Cassandra and Redis since then. Would it be a good idea to go to one of these two solutions, rather than stay on MongoDB? Why or why not?
Thank you
For a harvesting solution like this, I would recommend a multi-stage approach. Redis is good at real time communication. Redis is designed as an in-memory key/value store and inherits some very nice benefits of being a memory database: O(1) list operations. For as long as there is RAM to use on a server, Redis will not slow down pushing to the end of your lists which is good when you need to insert items at such an extreme rate. Unfortunately, Redis can't operate with data sets larger than the amount of RAM you have (it only writes to disk, reading is for restarting the server or in case of a system crash) and scaling has to be done by you and your application. (A common way is to spread keys across numerous servers, which is implemented by some Redis drivers especially those for Ruby on Rails.) Redis also has support for simple publish/subscribe messenging, which can be useful at times as well.
In this scenario, Redis is "stage one." For each specific type of event you create a list in Redis with a unique name; for example we have "page viewed" and "link clicked." For simplicity we want to make sure the data in each list is the same structure; link clicked may have a user token, link name and URL, while the page viewed may only have the user token and URL. Your first concern is just getting the fact it happened and whatever absolutely neccesary data you need is pushed.
Next we have some simple processing workers that take this frantically inserted information off of Redis' hands, by asking it to take an item off the end of the list and hand it over. The worker can make any adjustments/deduplication/ID lookups needed to properly file the data and hand it off to a more permanent storage site. Fire up as many of these workers as you need to keep Redis' memory load bearable. You could write the workers in anything you wish (Node.js, C#, Java, ...) as long as it has a Redis driver (most web languages do now) and one for your desired storage (SQL, Mongo, etc.)
MongoDB is good at document storage. Unlike Redis it is able to deal with databases larger than RAM and it supports sharding/replication on it's own. An advantage of MongoDB over SQL-based options is that you don't have to have a predetermined schema, you're free to change the way data is stored however you want at any time.
I would, however, suggest Redis or Mongo for the "step one" phase of holding data for processing and use a traditional SQL setup (Postgres or MSSQL, perhaps) to store post-processed data. Tracking client behavior sounds like relational data to me, since you may want to go "Show me everyone who views this page" or "How many pages did this person view on this given day" or "What day had the most viewers in total?". There may be even more complex joins or queries for analytic purposes you come up with, and mature SQL solutions can do a lot of this filtering for you; NoSQL (Mongo or Redis specifically) can't do joins or complex queries across varied sets of data.
I currently work for a very large ad network and we write to flat files :)
I'm personally a Mongo fan, but frankly, Redis and Cassandra are unlikely to perform either better or worse. I mean, all you're doing is throwing stuff into memory and then flushing to disk in the background (both Mongo and Redis do this).
If you're looking for blazing fast speed, the other option is to keep several impressions in local memory and then flush them disk every minute or so. Of course, this is basically what Mongo and Redis do for you. Not a real compelling reason to move.
All three solutions (four if you count flat-files) will give you blazing fast writes. The non-relational (nosql) solutions will give you tunable fault-tolerance as well for the purposes of disaster recovery.
In terms of scale, our test environment, with only three MongoDB nodes, can handle 2-3k mixed transactions per second. At 8 nodes, we can handle 12k-15k mixed transactions per second. Cassandra can scale even higher. 250 reads is (or should be) no problem.
The more important question is, what do you want to do with this data? Operational reporting? Time-series analysis? Ad-hoc pattern analysis? real-time reporting?
MongoDB is a good option if you want the ability to do ad-hoc analysis based on multiple attributes within a collection. You can put up to 40 indexes on a collection, though the indexes will be stored in-memory, so watch for size. But the result is a flexible analytical solution.
Cassandra is a key-value store. You define a static column or set of columns that will act as your primary index right up front. All queries run against Cassandra should be tuned to this index. You can put a secondary on it, but that's about as far as it goes. You can, of course, use MapReduce to scan the store for non-key attribution, but it will be just that: a serial scan through the store. Cassandra also doesn't have the notion of "like" or regex operations on the server nodes. If you want to find all customers where the first name starts with "Alex", you'll have to scan through the entire collection, pull the first name out for each entry and run it through a client-side regex.
I'm not familiar enough with Redis to speak intelligently about it. Sorry.
If you are evaluating non-relational platforms, you might also want to consider CouchDB and Riak.
Hope this helps.
Just found this: http://blog.axant.it/archives/236
Quoting the most interesting part:
This second graph is about Redis RPUSH vs Mongo $PUSH vs Mongo insert, and I find this graph to be really interesting. Up to 5000 entries mongodb $push is faster even when compared to Redis RPUSH, then it becames incredibly slow, probably the mongodb array type has linear insertion time and so it becomes slower and slower. mongodb might gain a bit of performances by exposing a constant time insertion list type, but even with the linear time array type (which can guarantee constant time look-up) it has its applications for small sets of data.
I guess everything depends at least on data type and volume. Best advice probably would be to benchmark on your typical dataset and see yourself.
According to the Benchmarking Top NoSQL Databases (download here)
I recommend Cassandra.
If you have the choice (and need to move away from flat fies) I would go with Redis. Its blazingly fast, will comfortably handle the load you're talking about, but more importantly you won't have to manage the flushing/IO code. I understand its pretty straight forward but less code to manage is better than more.
You will also get horizontal scaling options with Redis that you may not get with file based caching.
I can get around 30k inserts/sec with MongoDB on a simple $350 Dell. If you only need around 2k inserts/sec, I would stick with MongoDB and shard it for scalability. Maybe also look into doing something with Node.js or something similar to make things more asynchronous.
The problem with inserts into databases is that they usually require writing to a random block on disk for each insert. What you want is something that only writes to disk every 10 inserts or so, ideally to sequential blocks.
Flat files are good. Summary statistics (eg total hits per page) can be obtained from flat files in a scalable manner using merge-sorty map-reducy type algorithms. It's not too hard to roll your own.
SQLite now supports Write Ahead Logging, which may also provide adequate performance.
I have hand-on experience with mongodb, couchdb and cassandra. I converted a lot of files to base64 string and insert these string into nosql.
mongodb is the fastest. cassandra is slowest. couchdb is slow too.
I think mysql would be much faster than all of them, but I didn't try mysql for my test case yet.
I've been stuck in a MsSql/MySql world now for a few years, and I've decided to spread my wings a little further. At the moment I'm researching which DBMS is good at things needed when archiving data. Eg. lots of writes and low reads.
I've seen the NoSQL crusade, but I have a very RDBMS mindset, so I'm a bit skeptical.
Anyone have any suggestions? Or even any pointers to where there are some benchmarks etc for this kind of stuff.
Thank you :)
Thomas
edit
Since there was a question, I'll try to give a bit more info on what I'm thinking
I'm going to run a service on several servers, which will all have their local database. These databases will have a huge amount of hits (1/1 read/write), so I'm trying to keep them as empty as possible to keep query time down. My initial estimate is that no row will sit in that database for longer than 30min. Running an archive db on each of those services, seems like a waste of resources, so a central archive architecture looks better.
I'll try to ascii up a quick network architecture
___________ ___________ ___________
| service 1 | | service 2 | | service 3 |
----------- ----------- -----------
|____________|_______________|
____|____
| Archive |
---------
As you might know, MsSQL and MySQL only scales vertically when dealing with writing (not sure if it's a rdbms thing). So I'm looking into getting the most performance out of that archive DBMS as possible.
If the structure of the data you are archiving is relatively simple you could consider archiving directly to flat files. Good for writing, not so good for reading. There's some discussion on this topic in this question: Are flat file databases any good?
Otherwise, I'd stick with MySql and make sure it's properly tuned for high-write/low-read usage.
so I'm trying to keep them as empty as possible to keep query time down
First, Query speed is not directly proportional to Database size unless you're doing only full table scans. A Unique Index lookup is proportional to the depth of the index. From the time a index root block splits to the next time it splits could be millions of additional rows. In fact deleting rows to keep the database "as empty as possible" may not actually make the database smaller. Until you rebuild the index, you could have very sparse branch and leaf blocks making making index scans take longer and longer.
I'm not sure how MSSQL or MYSQL fill partially empty pages, but you may not see any space savings at all from deletes.
In Oracle, I'd suggest partitioning and drops over deletes for actually keep a database a certain size.
But I said all that to encourage you to spread your wings into an using an In memory database for your server usage, instead of focusing on your archive usage. In this case you've said nothing that makes me think an RDBMS isn't the best solution for archiving.
Oracle or PostGresSQL are also very powerful DBMS. But if you already know and used MySQL, why change?
MySQL is free, performant, well documented...
But if you mostly have write operations and not a lot of reads, and you don't want anymore of the commonly used DBMS, then you might consider a document based DBMS
I would recommend you to have a look at eXist db and Mongo DB
Hope this helps!
You can see read/write performance result of diferent database with this Database Benchmark Software (GNU GPL)
that is suitable find some answers.
Background:
I have a PostgreSQL (v8.3) database that is heavily optimized for OLTP.
I need to extract data from it on a semi real-time basis (some-one is bound to ask what semi real-time means and the answer is as frequently as I reasonably can but I will be pragmatic, as a benchmark lets say we are hoping for every 15min) and feed it into a data-warehouse.
How much data? At peak times we are talking approx 80-100k rows per min hitting the OLTP side, off-peak this will drop significantly to 15-20k. The most frequently updated rows are ~64 bytes each but there are various tables etc so the data is quite diverse and can range up to 4000 bytes per row. The OLTP is active 24x5.5.
Best Solution?
From what I can piece together the most practical solution is as follows:
Create a TRIGGER to write all DML activity to a rotating CSV log file
Perform whatever transformations are required
Use the native DW data pump tool to efficiently pump the transformed CSV into the DW
Why this approach?
TRIGGERS allow selective tables to be targeted rather than being system wide + output is configurable (i.e. into a CSV) and are relatively easy to write and deploy. SLONY uses similar approach and overhead is acceptable
CSV easy and fast to transform
Easy to pump CSV into the DW
Alternatives considered ....
Using native logging (http://www.postgresql.org/docs/8.3/static/runtime-config-logging.html). Problem with this is it looked very verbose relative to what I needed and was a little trickier to parse and transform. However it could be faster as I presume there is less overhead compared to a TRIGGER. Certainly it would make the admin easier as it is system wide but again, I don't need some of the tables (some are used for persistent storage of JMS messages which I do not want to log)
Querying the data directly via an ETL tool such as Talend and pumping it into the DW ... problem is the OLTP schema would need tweaked to support this and that has many negative side-effects
Using a tweaked/hacked SLONY - SLONY does a good job of logging and migrating changes to a slave so the conceptual framework is there but the proposed solution just seems easier and cleaner
Using the WAL
Has anyone done this before? Want to share your thoughts?
Assuming that your tables of interest have (or can be augmented with) a unique, indexed, sequential key, then you will get much much better value out of simply issuing SELECT ... FROM table ... WHERE key > :last_max_key with output to a file, where last_max_key is the last key value from the last extraction (0 if first extraction.) This incremental, decoupled approach avoids introducing trigger latency in the insertion datapath (be it custom triggers or modified Slony), and depending on your setup could scale better with number of CPUs etc. (However, if you also have to track UPDATEs, and the sequential key was added by you, then your UPDATE statements should SET the key column to NULL so it gets a new value and gets picked by the next extraction. You would not be able to track DELETEs without a trigger.) Is this what you had in mind when you mentioned Talend?
I would not use the logging facility unless you cannot implement the solution above; logging most likely involves locking overhead to ensure log lines are written sequentially and do not overlap/overwrite each other when multiple backends write to the log (check the Postgres source.) The locking overhead may not be catastrophic, but you can do without it if you can use the incremental SELECT alternative. Moreover, statement logging would drown out any useful WARNING or ERROR messages, and the parsing itself will not be instantaneous.
Unless you are willing to parse WALs (including transaction state tracking, and being ready to rewrite the code everytime you upgrade Postgres) I would not necessarily use the WALs either -- that is, unless you have the extra hardware available, in which case you could ship WALs to another machine for extraction (on the second machine you can use triggers shamelessly -- or even statement logging -- since whatever happens there does not affect INSERT/UPDATE/DELETE performance on the primary machine.) Note that performance-wise (on the primary machine), unless you can write the logs to a SAN, you'd get a comparable performance hit (in terms of thrashing filesystem cache, mostly) from shipping WALs to a different machine as from running the incremental SELECT.
if you can think of a 'checksum table' that contains only the id's and the 'checksum' you can not only do a quick select of the new records but also the changed and deleted records.
the checksum could be a crc32 checksum function you like.
The new ON CONFLICT clause in PostgreSQL has changed the way I do many updates. I pull the new data (based on a row_update_timestamp) into a temp table then in one SQL statement INSERT into the target table with ON CONFLICT UPDATE. If your target table is partitioned then you need to jump through a couple of hoops (i.e. hit the partition table directly). The ETL can happen as you load the the Temp table (most likely) or in the ON CONFLICT SQL (if trivial). Compared to to other "UPSERT" systems (Update, insert if zero rows etc.) this shows a huge speed improvement. In our particular DW environment we don't need/want to accommodate DELETEs. Check out the ON CONFLICT docs - it gives Oracle's MERGE a run for it's money!