What is a good DBMS for archiving? - rdbms

I've been stuck in a MsSql/MySql world now for a few years, and I've decided to spread my wings a little further. At the moment I'm researching which DBMS is good at things needed when archiving data. Eg. lots of writes and low reads.
I've seen the NoSQL crusade, but I have a very RDBMS mindset, so I'm a bit skeptical.
Anyone have any suggestions? Or even any pointers to where there are some benchmarks etc for this kind of stuff.
Thank you :)
Thomas
edit
Since there was a question, I'll try to give a bit more info on what I'm thinking
I'm going to run a service on several servers, which will all have their local database. These databases will have a huge amount of hits (1/1 read/write), so I'm trying to keep them as empty as possible to keep query time down. My initial estimate is that no row will sit in that database for longer than 30min. Running an archive db on each of those services, seems like a waste of resources, so a central archive architecture looks better.
I'll try to ascii up a quick network architecture
___________ ___________ ___________
| service 1 | | service 2 | | service 3 |
----------- ----------- -----------
|____________|_______________|
____|____
| Archive |
---------
As you might know, MsSQL and MySQL only scales vertically when dealing with writing (not sure if it's a rdbms thing). So I'm looking into getting the most performance out of that archive DBMS as possible.

If the structure of the data you are archiving is relatively simple you could consider archiving directly to flat files. Good for writing, not so good for reading. There's some discussion on this topic in this question: Are flat file databases any good?
Otherwise, I'd stick with MySql and make sure it's properly tuned for high-write/low-read usage.

so I'm trying to keep them as empty as possible to keep query time down
First, Query speed is not directly proportional to Database size unless you're doing only full table scans. A Unique Index lookup is proportional to the depth of the index. From the time a index root block splits to the next time it splits could be millions of additional rows. In fact deleting rows to keep the database "as empty as possible" may not actually make the database smaller. Until you rebuild the index, you could have very sparse branch and leaf blocks making making index scans take longer and longer.
I'm not sure how MSSQL or MYSQL fill partially empty pages, but you may not see any space savings at all from deletes.
In Oracle, I'd suggest partitioning and drops over deletes for actually keep a database a certain size.
But I said all that to encourage you to spread your wings into an using an In memory database for your server usage, instead of focusing on your archive usage. In this case you've said nothing that makes me think an RDBMS isn't the best solution for archiving.

Oracle or PostGresSQL are also very powerful DBMS. But if you already know and used MySQL, why change?
MySQL is free, performant, well documented...
But if you mostly have write operations and not a lot of reads, and you don't want anymore of the commonly used DBMS, then you might consider a document based DBMS
I would recommend you to have a look at eXist db and Mongo DB
Hope this helps!

You can see read/write performance result of diferent database with this Database Benchmark Software (GNU GPL)
that is suitable find some answers.

Related

Guideline when designing a database in Postgresql

I am designing a database in Postgresql and I would like to have some expert advices before refactorizing my work.
The database naturally contains different parts that I plan to separate into schemas in order to have a mangling of object names that reflect logical organization of them. About 20 tables are for scientific purposes and 20 others are technical and 20 furthers are about administrative tasks.
Is that a good idea or am I misleading myself into a management overhead that I will regret later?
The database contains 3 tables that are huge. By huge, I mean there is more than 60 millions of rows in it and they might grow a little bit. I think I will create special tablespace for that tables. I would like to do it, in order to separate logically the place where data are stored because the rest of the database should be backuped in a different way than that three tables.
Further more one those 3 tables contains binary data that are not heavy but weight a bit when multiplying by the amount of rows and also this table grows faster than the 2 others. Then I will periodically purge it after backuping the table.
Is it a good idea to have more than one tablespace in a database? If so, is there any precaution to be taken when proceeding this way?
Thank you in advance for your advices.
Choosing good names & grouping database stuffs is always a wise choice, and such overheads are not usually considerable.
About separating tablespace of a single database, it also should not cause any special problem, I've a similar database (but in mysql) that has a large file table and I had to move all of it's content to another server for some optimization reasons and i had no problem with it till now.
There is a very more important matter in RDBMS designing and that's CORRECT TABLE INDEXING. I think choosing good indexes is most critical phase of designing a relational database and you'll see it's effect soon (when you begin to write JOIN queries!).
In general, designing and implementing database is an experimental job that depends to your situation and expertness, so you can't seek for a solid instruction.

NoSQL in a single machine

As part of my university curriculum I ended up with a real project which consists in helping a company shifting from their relational data warehouse into a NoSQL data warehouse. The thing is that what they are looking for is better performance in large jobs but so far they have used a single machine and if they indeed migrate to NoSQL they still wish to keep using a single machine for cost reasons.
As far as I know the whole point of NoSQL is to run it in a large distributed system of several machines. So I don't see the point of this migration, specially since I am pretty sure (but not entirely) that if they do install NoSQL, they will probably end having even worst performance.
But still I am not comfortable telling them this since I am still new to this area (less than a month), so I wonder, is there are any situation where using NoSQL in a single machine for a datawarehouse would be justifiable performance wise? Or is it just a plain bad idea?
The answer to your question, like the answer to so many questions, is "it depends."
Ignoring the commentary on the question, I think there may be legitimacy to your client's question. Both relational and non-relational databases ultimately hold data in key-value tuples, with indexes and such to ensure quick and speedy access to the data. The difference is that SQL/relational databases contain an incredible amount of overhead to attempt the optimal way to retrieve results given an unknown set of queries, as well as ensure stable concurrency. This overhead is both computationally expensive and rarely results in the optimal solution. As a result, SQL databases often perform significantly slower for simple repetitive queries.
No-sql databases, on the other hand, are more of a "bare-bones" database, relying on programmers and intelligent design to achieve success. They are optimized to retrieve a value for a given key very quickly, often sub-millisecond. As a result, increased up front investment in the design results in superior and near-optimal performance. It will be necessary to determine the cost-benefit of doing this up-front design, but it is all but guaranteed that the no-sql approach will perform better regardless of the number of machines involved (in fact, SQL databases are very difficult or impossible to cluster together and is one of the main reasons why NoSql was developed).
Eventually we will see relational-like solutions implemented on a no-sql platform. In fact, Mongo, Elasticsearch, and Couchbase (probably others) already have SQL-like query functionality. But right now, you are faced with this dilemma.
For a single machine if the load is write heavy e.g. your logging a lot of events you could do for cassandra. Also a good alternative is hbase but its heavy and not suggested for single node. If they expose api in json you could look into document based dbs such as couchbase, mongo db. If you have an idea about the load then selecting a nosql data store is much easier
If you're in a position where you need to pick one, I think you should look first at MongoDB. If you've never tried it, I really recommend you visit their live demo with tutorial and give it a try. If you like, download and follow the installation guide on their site. It's free, runs well on a single machine, and is incredibly easy to use.
In addition to MongoDB, I've used Oracle, SQL Server, MySQL, SQLite, and HBase. I understand Cassandra should be in the list but I've not tried it. With MongoDB, I was fully deployed and executing reads and writes from an application in like two hours. I attribute most of that to their website's clear and concise instructional content. The biggest learning curve was figuring out how the queries work for things like updating a record or deleting a record without deleting the entire set of similar records.
Regarding NoSQL vs RDBMS, some points to consider:
Adding a new column to RDBMS table can lock the database in or degrade performance in another
MongoDB is schema-less so adding a new field, does not effect old documents and will be instant (think how flexible that really is - throw any dimension of data into this system without maintenance overhead)
You're less likely to require a DBA to solve your schema problems when an application changes
I think problems related to table size are irrelevant, so you won't run into a scaling problem - just a disk space problem on single machine

Which NoSQL databases support text array columns (and indexes on this columns) like the postgreSQL text[] type?

I need to move data from a postgreSQL to a NoSQL database, in the process we are evaluating different NoSQL databases and Cassandra came up as a possibility but from the documentation it seems like Cassandra doesn't support having a text array as a column type, is this correct? Which NoSQL databases support this type of columns and support indexes on this type of columns?
For example to store this and have an index on a column with this type of data:
City:['Washington','Washington DC']
Thanks in advance!
Not exactly an answer to your question (not enough reputation to comment (?!?)), but understanding that your problem is scale, and you are coming from PostgreSQL, have you tried PostgresXC yet? That may be a much easier transition than to NoSQL. NoSQL databases, as I assume you know, have very different performance characteristics and nuances that might actually do more harm than good. Postgres-XC is a multi-master write-scalable fork of PostgreSQL and sits somewhere between 9.1 and 9.2 from a PostgreSQL feature standpoint and it is an active project. 9.2 conformance was slated this month or last if I recall correctly. It's relatively easy to set up for what it is - you'll build 2 GTM's, one as a primary and one as a failover, give them enough memory. Then you can scale horizontally by adding pairs of coordinators and data nodes, 1 coordinator and 1 data node per server. Your application tier can talk to any of the coordinators, transactions are shipped to the appropriate coordinators and you can specify the distribution of your data by table - either replicated for small reference tables or distributed for large ones. If you design your queries well, you can get massive performance improvement because your queries can be shipped and executed simultaneously on multiple coordinator/data node pairs.
I know you are looking for NoSQL, but I mention this because we too had a vertical vs horizontal scale problem and in the end I found it was easier to build NoSQL capability into a relational system than it was to build relational capability into a NoSQL system. And of course it all depends on your data, sometimes NoSQL is absolutely the best choice. Sometimes it can be a major headache too, for example some NoSQL databases have problems with filesystem growth so whereas you thought you bought horizontal scalability you wound up eating your SAN out of house and home.
Anyway, hope that helps! I would have left it as a comment but stackoverflow has that strange reputation thing going on.
I forgot to mention also, with Postgres-XC you can specify on which columns you wish to distribute and by what kind of algorithm. I typically distribute by hash, and make sure of two things, first that hash can be generated application-side so that I don't have to do joins on tables that are gadzillions of rows and second that the hash keeps the distribution level across servers correct but while also keeping related information together on the same server so as to increase the shippability of queries. That is, if you have a customer table and a customer orders table, distribute both on a hash of some customer unique information that is in both tables and make sure you can generate that application-side. I hope that makes sense, I'm not sure if I did a good job explaining. If you would like further clarification on that please let me know, the docs are a bit scattered on XC right now, so a lot of what I related is OJT.

NoSQL & AdHoc Queries - Millions of Rows

I currently run a MySQL-powered website where users promote advertisements and gain revenue every time someone completes one. We log every time someone views an ad ("impression"), every time a user clicks an add ("click"), and every time someone completes an ad ("lead").
Since we get so much traffic, we have millions of records in each of these respective tables. We then have to query these tables to let users see how much they have earned, so we end up performing multiple queries on tables with millions and millions of rows multiple times in one request, hundreds of times concurrently.
We're looking to move away from MySQL and to a key-value store or something along those lines. We need something that will let us store all these millions of rows, query them in milliseconds, and MOST IMPORTANTLY, use adhoc queries where we can query any single column, so we could do things like:
FROM leads WHERE country = 'US' AND user_id = 501 (the NoSQL equivalent, obviously)
FROM clicks WHERE ad_id = 1952 AND user_id = 200 AND country = 'GB'
etc.
Does anyone have any good suggestions? I was considering MongoDB or CouchDB but I'm not sure if they can handle querying millions of records multiple times a second and the type of adhoc queries we need.
Thanks!
With those requirements, you are probably better off sticking with SQL and setting up replication/clustering if you are running into load issues. You can set up indexing on a document database so that those queries are possible, but you don't really gain anything over your current system.
NoSQL systems generally improve performance by leaving out some of the more complex features of relational systems. This means that they will only help if your scenario doesn't require those features. Running ad hoc queries on tabular data is exactly what SQL was designed for.
CouchDB's map/reduce is incremental which means it only processes a document once and stores the results.
Let's assume, for a moment, that CouchDB is the slowest database in the world. Your first query with millions of rows takes, maybe, 20 hours. That sounds terrible. However, your second query, your third query, your fourth query, and your hundredth query will take 50 milliseconds, perhaps 100 including HTTP and network latency.
You could say CouchDB fails the benchmarks but gets honors in the school of hard knocks.
I would not worry about performance, but rather if CouchDB can satisfy your ad-hoc query requirements. CouchDB wants to know what queries will occur, so it can do the hard work up-front before the query arrives. When the query does arrive, the answer is already prepared and out it goes!
All of your examples are possible with CouchDB. A so-called merge-join (lots of equality conditions) is no problem. However CouchDB cannot support multiple inequality queries simultaneously. You cannot ask CouchDB, in a single query, for users between age 18-40 who also clicked fewer than 10 times.
The nice thing about CouchDB's HTTP and Javascript interface is, it's easy to do a quick feasibility study. I suggest you try it out!
Most people would probably recommend MongoDB for a tracking/analytic system like this, for good reasons. You should read the „MongoDB for Real-Time Analytics” chapter from the „MongoDB Definitive Guide” book. Depending on the size of your data and scaling needs, you could get all the performance, schema-free storage and ad-hoc querying features. You will need to decide for yourself if issues with durability and unpredictability of the system are risky for you or not.
For a simpler tracking system, Redis would be a very good choice, offering rich functionality, blazing speed and real durability. To get a feel how such a system would be implemented in Redis, see this gist. The downside is, that you'd need to define all the „indices” by yourself, not gain them for „free”, as is the case with MongoDB. Nevertheless, there's no free lunch, and MongoDB indices are definitely not a free lunch.
I think you should have a look into how ElasticSearch would enable you:
Blazing speed
Schema-free storage
Sharding and distributed architecture
Powerful analytic primitives in the form of facets
Easy implementation of „sliding window”-type of data storage with index aliases
It is in heart a „fulltext search engine”, but don't get yourself confused by that. Read the „Data Visualization with ElasticSearch and Protovis“ article for real world use case of ElasticSearch as a data mining engine.
Have a look on these slides for real world use case for „sliding window” scenario.
There are many client libraries for ElasticSearch available, such as Tire for Ruby, so it's easy to get off the ground with a prototype quickly.
For the record (with all due respect to #jhs :), based on my experience, I cannot imagine an implementation where Couchdb is a feasible and useful option. It would be an awesome backup storage for your data, though.
If your working set can fit in the memory, and you index the right fields in the document, you'd be all set. Your ask is not something very typical and I am sure with proper hardware, right collection design (denormalize!) and indexing you should be good to go. Read up on Mongo querying, and use explain() to test the queries. Stay away from IN and NOT IN clauses that'd be my suggestion.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. The work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing MySQL on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. However for your use case I think a Column Family database may be the best solution, I think there are a few places which have implemented similar solutions to very similar problems (I think the NYTimes is using HBase to monitor user page clicks). Another great example is Facebook and like, they are using HBase for this. There is a really good article here which may help you along your way and further explain some points above. http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
Final point would be that NoSQL systems are not the be all and end all. Putting your data into a NoSQL database does not mean its going to perform any better than MySQL, Oracle or even text files... For example see this blog post: http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
I'd have a look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive - Also have a look at Hadoop streaming...
Hypertable - Another CF CP DB.
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.

Has anyone used an object database with a large amount of data?

Object databases like MongoDB and db4o are getting lots of publicity lately. Everyone that plays with them seems to love it. I'm guessing that they are dealing with about 640K of data in their sample apps.
Has anyone tried to use an object database with a large amount of data (say, 50GB or more)? Are you able to still execute complex queries against it (like from a search screen)? How does it compare to your usual relational database of choice?
I'm just curious. I want to take the object database plunge, but I need to know if it'll work on something more than a sample app.
Someone just went into production with a 12 terabytes of data in MongoDB. The largest I knew of before that was 1 TB. Lots of people are keeping really large amounts of data in Mongo.
It's important to remember that Mongo works a lot like a relational database: you need the right indexes to get good performance. You can use explain() on queries and contact the user list for help with this.
When I started db4o back in 2000 I didn't have huge databases in mind. The key goal was to store any complex object very simply with one line of code and to do that good and fast with low ressource consumption, so it can run embedded and on mobile devices.
Over time we had many users that used db4o for webapps and with quite large amounts of data, going close to todays maximum database file size of 256GB (with a configured block size of 127 bytes). So to answer your question: Yes, db4o will work with 50GB, but you shouldn't plan to use it for terabytes of data (unless you can nicely split your data over multiple db4o databases, the setup costs for a single database are negligible, you can just call #openFile() )
db4o was acquired by Versant in 2008, because it's capabilites (embedded, low ressource-consumption, lightweight) make it a great complimentary product to Versant's high-end object database VOD. VOD scales for huge amounts of data and it does so much better than relational databases. I think it will merely chuckle over 50GB.
MongoDB powers SourceForge, The New York Times, and several other large databases...
You should read the MongoDB use cases. People who are just playing with technology are often just looking at how does this work and are not at the point where they can understand the limitations. For the right sorts of datasets and access patterns 50GB is nothing for MongoDB running on the right hardware.
These non-relational systems look at the trade-offs which RDBMs made, and changed them a bit. Consistency is not as important as other things in some situations so these solutions let you trade that off for something else. The trade-off is still relatively minor ms or maybe secs in some situations.
It is worth reading about the CAP theorem too.
I was looking at moving the API I have for sure with the stack overflow iphone app I wrote a while back to MongoDB from where it currently sits in a MySQL database. In raw form the SO CC dump is in the multi-gigabyte range and the way I constructed the documents for MongoDB resulted in a 10G+ database. It is arguable that I didn't construct the documents well but I didn't want to spend a ton of time doing this.
One of the very first things you will run into if you start down this path is the lack of 32 bit support. Of course everything is moving to 64 bit now but just something to keep in mind. I don't think any of the major document databases support paging in 32 bit mode and that is understandable from a code complexity standpoint.
To test what I wanted to do I used a 64 bit instance EC2 node. The second thing I ran into is that even though this machine had 7G of memory when the physical memory was exhausted things went from fast to not so fast. I'm not sure I didn't have something set up incorrectly at this point because the non-support of 32 bit system killed what I wanted to use it for but I still wanted to see what it looked like. Loading the same data dump into MySQL takes about 2 minutes on a much less powerful box but the script I used to load the two database works differently so I can't make a good comparison. Running only a subset of the data into MongoDB was much faster as long as it resulted in a database that was less than 7G.
I think my take away from it was that large databases will work just fine but you may have to think about how the data is structured more than you would with a traditional database if you want to maintain the high performance. I see a lot of people using MongoDB for logging and I can imagine that a lot of those databases are massive but at the same time they may not be doing a lot of random access so that may mask what performance would look like for more traditional applications.
A recent resource that might be helpful is the visual guide to nosql systems. There are a decent number of choices outside of MongoDB. I have used Redis as well although not with as large of a database.
Here's some benchmarks on db4o:
http://www.db4o.com/about/productinformation/benchmarks/
I think it ultimately depends on a lot of factors, including the complexity of the data, but db4o seems to certainly hang with the best of them.
Perhaps worth a mention.
The European Space Agency's Planck mission is running on the Versant Object Database.
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=46951
It is a satelite with 74 onboard sensors launched last year which is mapping the infrarred spectrum of the universe and storing the information in a map segment model. It has been getting a ton of hype these days because of it's producing some of the coolest images ever seen of the universe.
Anyway, it has generated 25T of information stored in Versant and replicated across 3 continents. When the mission is complete next year, it will be a total of 50T
Probably also worth noting, object databases tend to be a lot smaller to hold the same information. It is because they are truly normalized, no data duplication for joins, no empty wasted column space and few indexes rather than 100's of them. You can find public information about testing ESA did to consider storage in multi-column relational database format -vs- using a proper object model and storing in the Versant object database. THey found they could save 75% disk space by using Versant.
Here is the implementation:
http://www.planck.fr/Piodoc/PIOlib_Overview_V1.0.pdf
Here they talk about 3T -vs- 12T found in the testing
http://newscenter.lbl.gov/feature-stories/2008/12/10/cosmic-data/
Also ... there are benchmarks which show Versant orders of magnitude faster on the analysis side of the mission.
CHeers,
-Robert