MATLAB - replace zeros in matrix with small number - matlab

I have a matrix with some elements going to zero. This is a problem for me in consequent operations (taking log, etc). Is there a way to quickly replace zero elements in a matrix with a input of my choice. Quickly - meaning, without a loop.

The direct answer is:
M(M == 0) = realmin;
which does exactly what you ask for, replacing zeros with a small number. See that this does an implicit search for the zeros in a vectorized way. No loops are required. (This is a MATLAB way, avoiding those explicit and slow loops.)
Or, you could use max, since negative numbers are never an issue. So
M = max(M,realmin);
will also work. Again, this is a vectorized solution. I'm not positive which one is faster without a careful test, but either will surely be acceptable.
Note that I've used realmin here instead of eps, since it is as small as you can realistically get in a double precision number. But use whatever small number makes sense to you.
log10(realmin)
ans =
 -307.6527
Compare that to eps.
log10(eps)
ans =
-15.6536

Sure--where A is your matrix,
A(A==0) = my_small_number;

Assume your matrix is called A
A(A==0) = eps;

Related

Matlab, economy QR decomposition, control precision?

There is a [Q,R] = qr(A,0) function in Matlab, which, according to documentation, returns an "economy" version of qr-decomposition of A. norm(A-Q*R) returns ~1e-12 for my data set. Also Q'*Q should theoretically return I. In practice there are small nonzero elements above and below the diagonal (of the order of 1e-6 or so), as well as diagonal elements that are slightly greater than 1 (again, by 1e-6 or so). Is anyone aware of a way to control precision of qr(.,0), or quality(orthogonality) of resulting Q, either by specifying epsilon, or via the number of iterations ? The size of the data set makes qr(A) run out of memory so I have to use qr(A,0).
When I try the non- economy setting, I actually get comparable results for A-Q*R. Even for a tiny matrix containing small numbers as shown here:
A = magic(20);
[Q, R] = qr(A); %Result does not change when using qr(A,0)
norm(A-Q*R)
As such I don't believe the 'economy' is the problem as confirmed by #horchler in the comments, but that you have just ran into the limits of how accurate calculations can be done with data of type 'double'.
Even if you change the accuracy somehow, you will always be dealing with an approximation, so perhaps the first thing to consider here is whether you really need greater accuracy than you already have. If you need more accuracy there may always be a way, but I doubt whether it will be a straightforward one.

Logical indexing and double precision numbers

I am trying to solve a non-linear system of equations using the Newton-Raphson iterative method, and in order to explore the parameter space of my variables, it is useful to store the previous solutions and use them as my first initial guess so that I stay in the basin of attraction.
I currently save my solutions in a structure array that I store in a .mat file, in about this way:
load('solutions.mat','sol');
str = struct('a',Param1,'b',Param2,'solution',SolutionVector);
sol=[sol;str];
save('solutions.mat','sol');
Now, I do another run, in which I need the above solution for different parameters NewParam1 and NewParam2. If Param1 = NewParam1-deltaParam1, and Param2 = NewParam2 - deltaParam2, then
load('solutions.mat','sol');
index = [sol.a]== NewParam1 - deltaParam1 & [sol.b]== NewParam2 - deltaParam2;
% logical index to find solution from first block
SolutionVector = sol(index).solution;
I sometimes get an error message saying that no such solution exists. The problem lies in the double precisions of my parameters, since 2-1 ~= 1 can happen in Matlab, but I can't seem to find an alternative way to achieve the same result. I have tried changing the numerical parameters to strings in the saving process, but then I ran into problems with logical indexing with strings.
Ideally, I would like to avoid multiplying my parameters by a power of 10 to make them integers as this will make the code quite messy to understand due to the number of parameters. Other than that, any help will be greatly appreciated. Thanks!
You should never use == when comparing double precision numbers in MATLAB. The reason is, as you state in the the question, that some numbers can't be represented precisely using binary numbers the same way 1/3 can't be written precisely using decimal numbers.
What you should do is something like this:
index = abs([sol.a] - (NewParam1 - deltaParam1)) < 1e-10 & ...
abs([sol.b] - (NewParam2 - deltaParam2)) < 1e-10;
I actually recommend not using eps, as it's so small that it might actually fail in some situations. You can however use a smaller number than 1e-10 if you need a very high level of accuracy (but how often do we work with numbers less than 1e-10)?

Matlab not accepting whole number as index

I am using a while loop with an index t starting from 1 and increasing with each loop.
I'm having problems with this index in the following bit of code within the loop:
dt = 100000^(-1);
t = 1;
equi = false;
while equi==false
***some code that populates the arrays S(t) and I(t)***
t=t+1;
if (t>2/dt)
n = [S(t) I(t)];
np = [S(t-1/dt) I(t-1/dt)];
if sum((n-np).^2)<1e-5
equi=true;
end
end
First, the code in the "if" statement is accessed at t==200000 instead of at t==200001.
Second, the expression S(t-1/dt) results in the error message "Subscript indices must either be real positive integers or logicals", even though (t-1/dt) is whole and equals 1.0000e+005 .
I guess I can solve this using "round", but this worked before and suddenly doesn't work and I'd like to figure out why.
Thanks!
the expression S(t-1/dt) results in the error message "Subscript indices must either be real positive integers or logicals", even though (t-1/dt) is whole and equals 1.0000e+005
Is it really? ;)
mod(200000 - 1/dt, 1)
%ans = 1.455191522836685e-11
Your index is not an integer. This is one of the things to be aware of when working with floating point arithmetic. I suggest reading this excellent resource: "What every computer scientist should know about floating-point Arithmetic".
You can either use round as you did, or store 1/dt as a separate variable (many options exist).
Matlab is lying to you. You're running into floating point inaccuracies and Matlab does not have an honest printing policy. Try printing the numbers with full precision:
dt = 100000^(-1);
t = 200000;
fprintf('2/dt == %.12f\n',2/dt) % 199999.999999999971
fprintf('t - 1/dt == %.12f\n',t - 1/dt) % 100000.000000000015
While powers of 10 are very nice for us to type and read, 1e-5 (your dt) cannot be represented exactly as a floating point number. That's why your resulting calculations aren't coming out as even integers.
The statement
S(t-1/dt)
can be replaced by
S(uint32(t-1/dt))
And similarly for I.
Also you might want to save 1/dt hardcoded as 100000 as suggested above.
I reckon this will improve the comparison.

in matlab exit the entire loop and more

I am using this function to get a column vector in which every element is supposed to be 1,
but after n gets large, sometimes some element is not 1, this is due to the method constraint, I want to find out how large is n and return the value. the problem are: 1.it seems that 1 is stored as 1.0000, don't know how to convert it, and how to compare(location in comments) 2. don't know how to exit a loop completely. thank you.
function x = findn(n)
for m = 1:n
[a,b]=Hilbert(m);
m1 = GaussNaive(a,b);
m2 = size(m1,1);
% m1 is a n*1 matrix (a column vector) which every element is supposed
% to be 1, but when n gets large, some element is not 1.
for i = 1:m2
if (m1(i) ~= 1)
% this compare isn't really working, since 1 is stored as 1.0000 for whatever
% for whatever reason and they are not equal or not not equal.
% I doubt whether it really compared.
x = m;
break;
% it just exit the inner for loop, not entirely
end
end
end
In Matlab all numeric variables are, by default, double precision floating-point numbers. (Actually strings and logicals can look like f-p numbers too but forget that for the moment.) So, unless you take steps that your code doesn't show, you are working with f-p numbers. The sort of steps you can take include declaring your variables to have specific types, such as int32 or uint16, and taking care over the arithmetic operations you perform on them. Matlab's attraction to double-precision floating-point is very strong and it's easy to operate on ints (for example) and end up with floating-point numbers again. Start reading about those types in the documentation.
The reasons for avoiding (in-)equality tests on f-p numbers are explained on an almost daily basis here on SO, I won't repeat them, have a look around. The straightforward way to modify your code would be to replace the test with
if (m1(i) ~= 1)
with
if ((abs(m1(i)-1)>tol)
where tol is some small number such that any number larger than 1+tol (or smaller than 1-tol) is to be considered not equal to 1 for your purposes.
Unfortunately, as far as I know, Matlab lacks a statement to break from an inner loop to outside a containing loop. However, in this case, you can probably replace the break with a return which will return control to the function which called your function, or to the command-line if you invoked it from there.

How do I calculate result for every value in a matrix in MATLAB

Keeping simple, take a matrix of ones i.e.
U_iso = ones(72,37)
and some parameters
ThDeg = 0:5:180;
dtheta = 5*pi/180;
dphi = 5*pi/180;
Th = ThDeg*pi/180;
Now the code is
omega_iso = 0;
for i = 1:72
for j=1:37
omega_iso = omega_iso + U_iso(i,j)*sin(Th(j))*dphi*dtheta;
end
end
and
D_iso = (4 * pi)/omega_iso
This code is fine. It take a matrix with dimension 72*37. The loop is an approximation of the integral which is further divided by 4pi to get ONE value of directivity of antenna.
Now this code gives one value which will be around 1.002.
My problem is I dont need 1 value. I need a 72*37 matrix as my answer where the above integral approximation is implemented on each cell of the 72 * 37 matrix. and thus the Directviity 'D' also results in a matrix of same size with each cell giving the same value.
So all we have to do is instead of getting 1 value, we need value at each cell.
Can anyone please help.
You talk about creating a result that is a function essentially of the elements of U. However, in no place is that code dependent on the elements of U. Look carefully at what you have written. While you do use the variable U_iso, never is any element of U employed anywhere in that code as you have written it.
So while you talk about defining this for a matrix U, that definition is meaningless. So far, it appears that a call to repmat at the very end would create a matrix of the desired size, and clearly that is not what you are looking for.
Perhaps you tried to make the problem simple for ease of explanation. But what you did was to over-simplify, not leaving us with something that even made any sense. Please explain your problem more clearly and show code that is consistent with your explanation, for a better answer than I can provide so far.
(Note: One option MIGHT be to use arrayfun. Or the answer to this question might be more trivial, using simple vectorized operations. I cannot know at this point.)
EDIT:
Your question is still unanswerable. This loop creates a single scalar result, essentially summing over the entire array. You don't say what you mean for the integral to be computed for each element of U_iso, since you are already summing over the entire array. Please learn to be accurate in your questions, otherwise we are just guessing as to what you mean.
My best guess at the moment is that you might wish to compute a cumulative integral, in two dimensions. cumtrapz can help you there, IF that is your goal. But I'm not sure it is your goal, since your explanation is so incomplete.
You say that you wish to get the same value in each cell of the result. If that is what you wish, then a call to repmat at the end will do what you wish.