I am developing a model for Heat Exchangers. I wrote the energy balance equation. When I check the model, I am getting the error shown in the figure. I am not able to figure it out the remaining three equations
model HX1
replaceable package Medium1 = Modelica.Media.Air.DryAirNasa annotation (
choicesAllMatching=true);
replaceable package Medium2 =
Modelica.Media.Water.ConstantPropertyLiquidWater annotation (
choicesAllMatching=true);
Modelica.Fluid.Interfaces.FluidPort_a AirInlet
annotation (Placement(transformation(extent={{-110,48},{-90,68}})));
Modelica.Fluid.Interfaces.FluidPort_a WaterOutlet
annotation (Placement(transformation(extent={{90,-48},{110,-28}})));
Modelica.Fluid.Interfaces.FluidPort_b AirOutlet
annotation (Placement(transformation(extent={{88,50},{108,70}})));
Modelica.Fluid.Interfaces.FluidPort_b WaterInlet
annotation (Placement(transformation(extent={{-110,-56},{-90,-36}})));
equation
WaterInlet.m_flow * (WaterOutlet.h_outflow - WaterInlet.h_outflow)
= AirInlet.m_flow * ( AirInlet.h_outflow - AirOutlet.h_outflow);
WaterInlet.m_flow = - WaterOutlet.m_flow;
AirInlet.m_flow = -AirOutlet.m_flow;
AirInlet.p = AirOutlet.p;
WaterInlet.p = WaterOutlet.p;
annotation (Icon(coordinateSystem(preserveAspectRatio=false)), Diagram(
coordinateSystem(preserveAspectRatio=false)));
end HX1;
Can anyone help me with this? Are there any heat exchangers available for free?
You need to specify the outgoing enthalpy in all situations. Please take a look at how to use stream variables — for example in Modelica.Fluid or in the Wiki of this simple example package.
The free Modelica Buildings Library has a number of heat exchanger models.
Code modifications
Your code will work if you change the energy balance to:
...
Modelica.Units.SI.HeatFlowRate Q_flow;
equation
WaterInlet.m_flow*(actualStream(WaterOutlet.h_outflow) - actualStream(
WaterInlet.h_outflow)) = Q_flow;
Q_flow = AirInlet.m_flow*(actualStream(AirInlet.h_outflow) - actualStream(
AirOutlet.h_outflow));
WaterOutlet.h_outflow = WaterInlet.h_outflow;
AirInlet.h_outflow = AirOutlet.h_outflow;
...
I'm currently studying chemical engineering and for my Bachelor thesis, I'm supposed to model a heated pipe that can be used in a superheater by connecting two pipes via a heatport together. Even though I made a big effort on understanding how I code correctly in Modelica, my code is still not working and I'm getting pretty desperate.
So the model basically has to be applicable for both fluid water and overheated steam, so just one-phase flow in instationary conditions. Heat transfer is supposed to happen convectively. Also, I neglect pressure losses due to friction in this model.
Here´s my idea of how the model is supposed to work:
I'm pretty much trying to build a model like the one in the MSL, "Dynamic Pipe", just way more easier so that students who work on the same topic are able to understand my code quickly. So I splitted the pipe into a number of nodes n, the first volume being a inlet state, so basically that state does not really belong to the pipe. After that, the balance equations apply. I´m not quite sure about the momentum equations, so any help on them is highly appreciated. Convective heat transfer is defined by the Model "Convection" from the MSL, Thermal.HeatTransfer.Components.
When testing the model with a flow source, a boundary with fixed pressure and a fixed temperature at the wall, I also get the error "Failed to reduce the DAE index" and I have absolutely no idea what that means.
Also, here is my code:
model Pipe_base3
//Import
import Modelica.SIunits.*;
import Modelica.Constants.pi;
replaceable package Medium =
Modelica.Media.Interfaces.PartialTwoPhaseMedium annotation (choicesAllMatching = true);
parameter Integer n=2;
parameter Integer np=1;
// Geometry==================================================================//
parameter Diameter d_pipe = 0.05 "Inner diameter of pipe"
annotation (Dialog(tab="Geometry"));
parameter Length L = 1 "Length of unit"
annotation (Dialog(tab="Geometry"));
parameter Area A_hex = pi * d_pipe * L
"Shell surface of pipe for heat exchange" annotation (Dialog(tab="Geometry"));
parameter Area A_q = (pi/4)*d_pipe^2
annotation (Dialog(tab="Geometry"));
//Initialisation=============================================================//
parameter Medium.Temperature T_start = 403.15 annotation (Dialog(tab="Initialization"));
parameter Medium.SpecificEnthalpy h_start = Medium.specificEnthalpy_pT(p_start, T_start) annotation (Dialog(tab="Initialization"));
parameter AbsolutePressure p_start = Medium.saturationPressure(T_start) annotation (Dialog(tab="Initialization"));
parameter Medium.MassFlowRate m_flow_start = 0.5 annotation (Dialog(tab="Initialization"));
//Temperature, pressure, energy==============================================//
Medium.Temperature T[n+1]( each start=T_start, fixed=false);
Medium.SpecificEnthalpy h[n+1]( each start=h_start, fixed=false);
Medium.AbsolutePressure p[n+1](each start=p_start, fixed=false);
HeatFlowRate Q_flow[n](fixed = false);
Energy U[n](min=0);
Energy KE[n]; //Kinetic Energy
Medium.ThermodynamicState state[n+1];
// Nondimensional Variables + HeatTransfer===================================//
Medium.PrandtlNumber Pr[n](fixed=false);
ReynoldsNumber Re[n](fixed=false);
Real Xi[n];
NusseltNumber Nu[n];
CoefficientOfHeatTransfer alpha[n];
// Thermodynamic properties==================================================//
Medium.SpecificInternalEnergy u[n](fixed=false);
Medium.DynamicViscosity eta[n];
Density rho[n+1];
Medium.SpecificHeatCapacity cp[n];
Medium.ThermalConductivity lambda_fluid[n];
//Segmental properties
Mass ms[n]; //Mass per Segment
MassFlowRate m_flow[n+1]( each start=m_flow_start/np, fixed=false);
Velocity w[n+1](fixed=false);
// Momentum
Force F_p[n];
Momentum I[n];
Force Ib_flow[n];
parameter Boolean init = false;
Modelica.Fluid.Interfaces.FluidPort_a fluidin( redeclare package Medium = Medium, m_flow(start = m_flow_start, min = 0), p(start = p_start))
annotation (Placement(transformation(extent={{-90,-100},{-70,-80}}),
iconTransformation(extent={{-90,-100},{-70,-80}})));
Modelica.Fluid.Interfaces.FluidPort_b fluidout( redeclare package Medium = Medium, m_flow(start = -m_flow_start, max = 0), p(start = p_start), h_outflow(start=h_start))
annotation (Placement(transformation(extent={{70,-100},{90,-80}}),
iconTransformation(extent={{70,-100},{90,-80}})));
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a[n] heatport
annotation (Placement(transformation(extent={{-10,60},{10,80}}),
iconTransformation(extent={{-10,60},{10,80}})));
Modelica.Blocks.Interfaces.RealOutput[n] alpha_output annotation (Placement(
transformation(extent={{-100,38},{-140,78}}), iconTransformation(extent={{-100,
38},{-140,78}})));
protected
parameter Volume vn = (A_q * L) / n; //Volume per segment
parameter Real x[n] = linspace((L/n), L, n);
parameter Length length = L/n;
initial equation
for i in 1:(n+1) loop
//h[i] = Medium.specificEnthalpy_pTX(p_start, T_start, {1});
p[i] = p_start;
end for;
equation
//Port equations=============================================================//
fluidout.p = p[n];
//fluidin.p-fluidout.p=p[1]-p[n+1];
fluidout.h_outflow = h[n];
fluidout.m_flow = -m_flow[n+1];
//===========================================================================//
h[1]=inStream(fluidin.h_outflow);
p[1]=fluidin.p;
state[1]=Medium.setState_ph(p[1],h[1]);
T[1]=Medium.temperature(state[1]);
rho[1]=Medium.density(state[1]);
m_flow[1]=fluidin.m_flow/np;
m_flow[1]=A_q*rho[1]*w[1];
for i in 1:(n) loop
// Heatport equations======================================================//
T[i] = heatport[i].T;
Q_flow[i] = heatport[i].Q_flow;
// Momentum Balance =======================================================//
der(I[i]) = Ib_flow[i] - F_p[i];
I[i]=m_flow[i]*length;
Ib_flow[i] = (p[i+1]*w[i+1]*w[i+1] - p[i]*w[i]*w[i])*A_q*np;
F_p[i] = (A_q*p[i+1]-A_q*p[i]);
// Energy Balance=========================================================//
U[i] = ms[i] * u[i];
KE[i] = 0.5*ms[i]*w[i+1]*w[i+1];
der(U[i]+KE[i])=m_flow[i]*(h[i]+0.5*w[i]) - m_flow[i+1]*(h[i+1]+0.5*w[i+1]) + Q_flow[i];
der(rho[i+1])= -((rho[i+1]-rho[i])*w[i+1] + (w[i+1]-w[i])*rho[i+1]); //Konti
ms[i]=vn*rho[i+1];
T[i+1]=Medium.temperature(state[i+1]);
state[i+1] = Medium.setState_ph(p[i+1], h[i+1], 1); //Sets thermodynamic state from which other properties can be determined
u[i] = Medium.specificInternalEnergy(state[i+1]);
cp[i] = Medium.specificHeatCapacityCp(state[i+1]);
rho[i+1] = Medium.density(state[i+1]);
eta[i] = Medium.dynamicViscosity(state[i+1]);
lambda_fluid[i] = Medium.thermalConductivity(state[i+1]);
Re[i] * eta[i] = (rho[i+1] * abs(w[i+1]) * d_pipe);
Pr[i] *lambda_fluid[i] = (eta[i] * cp[i]);
Xi[i] = (1.8 * log10(abs(Re[i])+1) - 1.5)^(-2);
Nu[i] = ((Xi[i]/8)*Re[i]*Pr[i])/(1+12.7*sqrt(Xi[i]/8)*((Pr[i])^(2/3)-1))*(1+(1/3)*(d_pipe/x[i])^(2/3));
Nu[i] = Modelica.Fluid.Pipes.BaseClasses.CharacteristicNumbers.NusseltNumber(alpha[i], d_pipe, lambda_fluid[i]);
alpha_output[i] = alpha[i] * (A_hex/n);
m_flow[i+1] = A_q * w[i+1] * rho[i+1];
// der(p[i]) = - w[i]*der(w[i]) * rho[i];
// 0 = m_flow[i-1] - m_flow[i];
// der(rho[i]) = -((rho[i]-rho[i-1])*w[i] + (v[i]-v[i-1])*rho[i]);
//m_flow[i] = A_q * w[i] * rho[i]; //Calculation of flow velocity
//ms[i] = vn * rho[i]; //Mass per segment
//Calculation of thermodynamic properties for each segment=================//
//Heat Transfer============================================================//
end for;
fluidin.h_outflow = h[1]; //
annotation (Icon(coordinateSystem(preserveAspectRatio=false, extent={{-100,-100},
{100,100}}), graphics={Line(
points={{-80,-80},{-80,94},{-80,100},{0,20},{80,100},{80,-80}},
color={0,0,255},
smooth=Smooth.None), Line(
points={{-60,-60},{-60,-48},{-60,0},{60,0},{60,-60},{48,-40},{72,-40},
{60,-60}},
color={0,0,255},
smooth=Smooth.None)}), __Dymola_selections);
end Pipe_base3;
Thank you so much in advance!
I was in the same situation when I started using Modelica: I wanted the features of Modelica.Fluid.Pipes.DynamicPipe but with less complexity (I wanted the code to be more readable and less hierarchical). So, like you, I started building my own pipe model from scratch. However, because I wanted to be able to replace the pressure drop and heat transfer correlations and have great flexibility I ended up with a model of nearly the same complexity as Modelica.Fluid.Pipes.DynamicPipe.
My recommendation to you is to
build your own simple dynamic pipe model without any complex
features. This will only be usable for educational purposes (e.g.
letting other students understand your coding principles)
learn how to use Modelica.Fluid.Pipes.DynamicPipe for problems where you need vary model complexity (number of segment, replaceable pressure drop and heat transfer methods etc.). Modelica.Fluid.Examples.HeatExchanger is an example of how you can use Modelica.Fluid.Pipes.DynamicPipe to model a heat exchanger like the one you request.
Here I've shared an example of a very simple dynamic pipe that can be used as a heat exchanger. The pipe is made from n pipe segments and takes advantage of the fact that you can instantiate an array of components and connect the elements in a for loop.
As for the momentum balance, the correct/complete way is to account for the change in momentum by summing all the forces acting on each control volume (Newton's Second law). However, in most lumped models a steady-state momentum balance is adequate which reduces the equation to a linear or quadratic relation between mass flow rate and pressure drop. Modelica.Fluid.Pipes.DynamicPipe has a number of different presssure/flow correlations to choose from.
Best regards,
Rene Just Nielsen
I have built a small example/test that uses your model. It should be a very simple application of your model. Unfortunately I get the same error message:
Cannot find differentiation function:
Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(boundary1.p, pipe_base3_1.h[2], 0, 1)
with respect to time
Index reduction basically means that the model contains equations that have no unknown. This is solved by differentiation of these equations with respect to time (which can happen multiple times). For more information you can check
https://www.inf.ethz.ch/personal/cellier/Lect/NSDS/Ppt/nsds_ppt_engl.html
especially lecture 16 and probably the ones before it :)
Therefore the Modelica tool will have to know how to do this differentiation. For equations this is usually done automatically, but for functions it has to be specified by the developer. It seems this is not done for Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph()
which is why you get the error message.
There are basically two possibilities to solve this problem:
You change your model to get rid of or revise the constraint equation (the one which has no unknown). It should be the one shown in the error message: der(pipe_base3_1.rho[2]) = ...
You add the function for differentiation to the medium (I'm not much into the Fluid/Media so I have no idea how complicated that is, so I would try to go with 1. first). How this can be done is shown in https://modelica.org/documents/ModelicaSpec33Revision1.pdf section 12.7
Here is the code of the example:
model PipeTest
Pipe_base3 pipe_base3_1(redeclare package Medium = Modelica.Media.Water.WaterIF97_R1pT)
annotation (Placement(transformation(extent={{-10,-10},{10,10}})));
Modelica.Fluid.Sources.FixedBoundary boundary(
nPorts=1,
p=100000,
redeclare package Medium = Modelica.Media.Water.WaterIF97_R1pT)
annotation (Placement(transformation(extent={{-60,-40},{-40,-20}})));
Modelica.Fluid.Sources.FixedBoundary boundary1(
nPorts=1,
p=100000,
redeclare package Medium = Modelica.Media.Water.WaterIF97_R1pT)
annotation (Placement(transformation(extent={{60,-40},{40,-20}})));
Modelica.Thermal.HeatTransfer.Sources.FixedHeatFlow fixedHeatFlow[2](Q_flow={0,0})
annotation (Placement(transformation(extent={{-40,20},{-20,40}})));
equation
connect(boundary.ports[1], pipe_base3_1.fluidin) annotation (Line(points={{-40,-30},{-8,-30},{-8,-9}}, color={0,127,255}));
connect(boundary1.ports[1], pipe_base3_1.fluidout) annotation (Line(points={{40,-30},{8,-30},{8,-9}}, color={0,127,255}));
connect(fixedHeatFlow.port, pipe_base3_1.heatport) annotation (Line(points={{-20,30},{0,30},{0,7}}, color={191,0,0}));
annotation (
Icon(coordinateSystem(preserveAspectRatio=false)),
Diagram(coordinateSystem(preserveAspectRatio=false)),
uses(Modelica(version="3.2.2")));
end PipeTest;
Hope this helps...
I am having trouble locating the source of an additional unknown in a modelling project I am working on. I am getting an error saying I have 34 unknowns and 33 equations. I decided to look at the flattened code in Dymola, and while I can count the correct number of variables, I cannot find a way to reach the 33 equations. Below is the flattened code:
model HeatStorage
parameter Modelica.SIunits.Diameter D = 18.667 "Diameter";
parameter Modelica.SIunits.Height H = 20 "Height";
parameter Boolean enable_losses = false "= true enable thermal losses with environment";
parameter Modelica.SIunits.CoefficientOfHeatTransfer alpha = 1
"Constant heat transfer coefficient with the ambient";
parameter Real L_start = 0 "Start value of level in %";
parameter Modelica.SIunits.Temperature T_start = Modelica.SIunits.Conversions.from_degC
(300) "Start value of temperature";
parameter Modelica.SIunits.Temperature T_max = Modelica.SIunits.Conversions.from_degC
(550) "Maximum tank temperature";
parameter Modelica.SIunits.Temperature T_set = Modelica.SIunits.Conversions.from_degC
(300) "Tank Heater Temperature Set-Point";
parameter Modelica.SIunits.Power W_max = 3000000000.0 "Hot Tank Heater Capacity";
parameter Modelica.SIunits.Efficiency e_ht = 0.99 "Tank Heater Efficiency";
parameter Boolean medium.preferredMediumStates = false "= true if StateSelect.prefer shall be used for the independent property variables of the medium";
parameter Boolean medium.standardOrderComponents = true "If true, and reducedX = true, the last element of X will be computed from the other ones";
input Modelica.Blocks.Interfaces.RealInput Q_heater;
parameter Modelica.SIunits.Volume V_t = H*3.141592653589793*D^2/4;
Modelica.Media.Interfaces.PartialMedium.MassFlowRate fluid_a.m_flow
"Mass flow rate from the connection point into the component";
Modelica.Media.Interfaces.Types.AbsolutePressure fluid_a.p "Thermodynamic pressure in the connection point";
Modelica.Media.Interfaces.Types.SpecificEnthalpy fluid_a.h_outflow
"Specific thermodynamic enthalpy close to the connection point if m_flow < 0";
Modelica.Media.Interfaces.Types.MassFraction fluid_a.Xi_outflow[0]
"Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0";
Modelica.Media.Interfaces.Types.ExtraProperty fluid_a.C_outflow[0](start =
fill(1.0, size(fluid_a.C_outflow, 1))) "Properties c_i/m close to the connection point if m_flow < 0";
Modelica.Media.Interfaces.PartialMedium.MassFlowRate fluid_b.m_flow
"Mass flow rate from the connection point into the component";
Modelica.Media.Interfaces.Types.AbsolutePressure fluid_b.p "Thermodynamic pressure in the connection point";
Modelica.Media.Interfaces.Types.SpecificEnthalpy fluid_b.h_outflow
"Specific thermodynamic enthalpy close to the connection point if m_flow < 0";
Modelica.Media.Interfaces.Types.MassFraction fluid_b.Xi_outflow[0]
"Independent mixture mass fractions m_i/m close to the connection point if m_flow < 0";
Modelica.Media.Interfaces.Types.ExtraProperty fluid_b.C_outflow[0](start =
fill(1.0, size(fluid_b.C_outflow, 1))) "Properties c_i/m close to the connection point if m_flow < 0";
Modelica.SIunits.Temperature heat_PB.T "Port temperature";
Modelica.SIunits.HeatFlowRate heat_PB.Q_flow "Heat flow rate (positive if flowing from outside into the component)";
Modelica.SIunits.Temperature heat_DS.T "Port temperature";
Modelica.SIunits.HeatFlowRate heat_DS.Q_flow "Heat flow rate (positive if flowing from outside into the component)";
Modelica.SIunits.Volume V;
Modelica.SIunits.Mass m;
Modelica.Media.Interfaces.PartialMedium.BaseProperties_D1.InputAbsolutePressure
medium.p(nominal = 100000.0, unit = "Pa", displayUnit = "bar", min = 0.0)
"Absolute pressure of medium";
Modelica.Media.Interfaces.PartialMedium.BaseProperties_D1.InputMassFraction
medium.Xi[0](start = {}, unit = "1", min = 0.0, max = 1.0) "Structurally independent mass fractions";
Modelica.Media.Interfaces.PartialMedium.BaseProperties_D1.InputSpecificEnthalpy
medium.h(unit = "J/kg") "Specific enthalpy of medium";
Modelica.Media.Interfaces.Types.Density medium.d "Density of medium";
Modelica.Media.Interfaces.Types.Temperature medium.T(start = 800, min = 573.15,
max = 873.15) "Temperature of medium";
Modelica.Media.Interfaces.Types.MassFraction medium.X[2](start = {0.5, 0.5})
"Mass fractions (= (component mass)/total mass m_i/m)";
Modelica.Media.Interfaces.Types.SpecificInternalEnergy medium.u
"Specific internal energy of medium";
Modelica.Media.Interfaces.Types.SpecificHeatCapacity medium.R "Gas constant (of mixture if applicable)";
Modelica.Media.Interfaces.Types.MolarMass medium.MM "Molar mass (of mixture or single fluid)";
Modelica.Media.Interfaces.Types.AbsolutePressure medium.state.p
"Absolute pressure of medium";
Modelica.Media.Interfaces.Types.SpecificEnthalpy medium.state.h
"Specific enthalpy";
Modelica.SIunits.Conversions.NonSIunits.Temperature_degC medium.T_degC =
Modelica.SIunits.Conversions.to_degC(medium.T) "Temperature of medium in [degC]";
Modelica.SIunits.Conversions.NonSIunits.Pressure_bar medium.p_bar =
Modelica.SIunits.Conversions.to_bar(medium.p) "Absolute pressure of medium in [bar]";
Modelica.SIunits.Area A;
Modelica.SIunits.HeatFlowRate Q_losses;
Modelica.Media.Interfaces.Types.AbsolutePressure state_i.p "Absolute pressure of medium";
Modelica.Media.Interfaces.Types.SpecificEnthalpy state_i.h "Specific enthalpy";
Modelica.SIunits.Power W_net;
Modelica.SIunits.Power W_loss;
output Modelica.Blocks.Interfaces.RealOutput L "Tank level in %";
Modelica.SIunits.HeatFlowRate Q_PB "Heat Flow to PowerBlock";
Modelica.SIunits.HeatFlowRate Q_desal "Heat Flow to Desalination";
// Equations and algorithms
// Component medium
// class SolarTherm.Media.MoltenSalt.MoltenSalt_base.BaseProperties
// extends Modelica.Media.Interfaces.PartialMedium.BaseProperties_D1
equation
if (medium.standardOrderComponents) then
medium.Xi = medium.X[1:0];
medium.X = {0.5, 0.5};
for i in (1:2) loop
assert(medium.X[i] >= -1E-005 and medium.X[i] <= 1.00001,
"Mass fraction X["+ String(i, true, 0)+"] = "+ String(
medium.X[i], true, 0)+"of substance "+{"NaNO3", "KNO3"}[i]+
"\nof medium "+"MoltenSalt"+" is not in the range 0..1");
end for;
end if;
assert(medium.p >= 0.0, "Pressure (= "+ String(medium.p, true, 0)+
" Pa) of medium \""+"MoltenSalt"+"\" is negative\n(Temperature = "+
String(medium.T, true, 0)+" K)");
// end of extends
equation
medium.d = SolarTherm.Media.MoltenSalt.MoltenSalt_Utilities.rho_T(medium.T);
medium.h = medium.state.h;
medium.u = medium.h-medium.p/medium.d;
medium.MM = 0.091438;
medium.R = 8.3144/medium.MM;
medium.state.p = medium.p;
medium.T = SolarTherm.Media.MoltenSalt.MoltenSalt_Utilities.T_h(medium.h);
// This model
// class PentakomoPlant.Storage.HeatStorage
equation
Q_losses = -0.939*exp(Modelica.SIunits.Conversions.to_degC(medium.T)*
0.005111)*1000*5/7;
fluid_a.p = medium.p;
fluid_b.p = medium.p;
fluid_a.h_outflow = medium.h;
fluid_b.h_outflow = medium.h;
der(m) = fluid_a.m_flow+fluid_b.m_flow;
m*der(medium.h)+der(m)*medium.h = Q_losses+Q_PB+Q_desal+W_net+fluid_a.m_flow
*inStream(fluid_a.h_outflow)+fluid_b.m_flow*medium.h;
V = m/medium.d;
L = 100*(max(medium.T, T_set)-T_set)/(T_max-T_set);
A = 6.283185307179586*(D/2)*H;
W_net = Q_heater;
W_loss = W_net/e_ht;
heat_PB.Q_flow = Q_PB;
heat_DS.Q_flow = Q_desal;
heat_PB.T = medium.T;
heat_DS.T = medium.T;
// Initial equations and algorithms
// This model
// class PentakomoPlant.Storage.HeatStorage
initial equation
medium.h = specificEnthalpy_Unique3(
state_i);
m = density_Unique4(
state_i)*V_t;
end HeatStorage;
If someone could shed some light on exactly how the equations are counted from the flat code so as to help me locate my missing variable, I would be most appreciative!!
Unfortunately the flattened code does not contain all the necessary information.
However, it is a good start and contains 27 equations:
2 binding equations
2 scalar equations in the extends Modelica.Media.Interfaces.PartialMedium.BaseProperties_D1
7 equations in SolarTherm.Media.MoltenSalt.MoltenSalt_base.BaseProperties outside the base-class
16 equations in PentakomoPlant.Storage.HeatStorage.
But in addition there can at least be:
Bindings of records (none in this case)
Flow-variables in top-level public connectors; in this case I would assume it 2+2+1+1 (fluid_a, fluid_b, heat_PB, heat_DS).
The top-level public input Q_heater can be handled in two ways, and as I recall Dymola has used both variants: either it does neither contribute to unknowns nor to equations (seen as a known variable), or it adds one to both.
I was playing with OpenModelica using the PowerSystem library and found something curious.
To have a full grasp of what the equation constraints from the block's classes are, I always open each block individually and instantiate it, to have the full list of variables and equations of the flattened model.
However, I noticed that when I do it, the instantiated model has additional equations that are not defined in the code concerning the block's class or any parent's class, nor exists when I use the block in another model.
For instance, when instantiating the class for a simple Resistor (AC1ph_DC), it adds the equations equating the currents to zero (the last four equations):
R[1] * i[1] = v[1];
R[2] * i[2] = v[2];
v[1] = term_p.v[1] - term_n.v[1];
v[2] = term_p.v[2] - term_n.v[2];
i[1] = term_p.i[1];
i[2] = term_p.i[2];
(...)
term_p.i[1] = 0.0;
term_p.i[2] = 0.0;
term_n.i[1] = 0.0;
term_n.i[2] = 0.0;
Is this done automatically by OpenModelica to have a solvable system when instantiating just the resistor? Is there any documentation on that available?
Also, is there any "more correct" way to visualize the flattened class code of any block?
In Modelica, flow variables that are not connected are set to zero.
See 9.2 in Modelica Specification:
https://modelica.org/documents/ModelicaSpec33Revision1.pdf