Database level lock on mongodb? - mongodb

I must be wrong about this. I'm considering using mongodb in my project, but I read this:
http://docs.mongodb.org/manual/faq/concurrency/#what-type-of-locking-does-mongodb-use
It says that mongodb uses a database level reader-writer lock.
MySQL InnoDB uses row-level locking. Well, doesn't it means, theoretically, mongodb is 2 levels slower than MySQL for concurrent access?

If you look up readers-writer lock you will find that it is a completely different type of animal than database lock that MySQL is referring to when you use the phrase "row level locking".
Readers-writer lock protects shared memory access, and therefore is extremely short lived (on the order of microseconds). Since in MongoDB operations are only atomic on the document level, these locks (in traditional databases they are sometimes referred to as latches and are used to guard index access) are only held as long as a single document takes to update in memory.
Regular "database lock" will usually exists until the transaction that's in progress has either been committed or rolled back. Because RDBMS transactions can span multiple operations across many tables, these locks are normally much longer lived and therefore must be much more granular to allow other work to happen concurrency.
doesn't it means, theoretically, mongodb is 2 levels slower than MySQL for concurrent access?
No, it really does not, and depending on your exact workload could be a lot faster or a little faster or slower - it all depends on the types of operations you are doing, your available physical resources, the structure of your data, as well as the needs of your application.
Applications that write a lot of data to the database in MongoDB tend to be limited primarily by the available disk IO throughput rate. Only when available disk bandwidth exceeds the amount of writes done by the application to the database would you see concurrency become a factor with MongoDB. With relational databases, because of longer lifetimes of locks, concurrency can become a factor much earlier even with relatively small amount of total data being written.

Related

How Mongo DB or any nosql DB (Hbase, Cassandra) is scalable and having advantage over traditional RDBMS?

I am still not able to relate in real-time how nosql is beneficial whereas we have indexes too in traditional RDBMS's. If someone can suggest columnar databases advantages in real application particularly in terms of using structure, semistructured or unstructured data.
Largely, it depends on what you want your datastore to do. If you want to be able to scale to meet storage or operational demands, a RDBMS can only take you so far.
It comes down how you can scale to meet demand. A RDBMS is really only capable of scaling vertically. That is, add more RAM, add more disk, etc. A distributed (NoSQL) database makes scaling easier by allowing you to add more machine instances. This is known as scaling horizontally.
Here's an example using Cassandra:
Let's say I have a 3 node cluster, and my keyspace (database) is also configured with a replication factor (RF) of 3. This means that each node is responsible for 100% of the data. I load my data, and it takes up 100GB of disk space (on each node). Now, while I might have 300GB of data total in my cluster, a single copy of my data is 100GB.
So my product team comes to me and says they need to double the amount of data they have. I know that I built their 3 node cluster with 200GB drives. If I did nothing, those drives would pretty much fill-up (and if they didn't they wouldn't leave room for much else).
Now it's up to me to scale the cluster to meet their space demands. I'll start by adding 3 new nodes to the cluster (for a total of 6), but I'll leave my RF at 3. This makes each node responsible for 50% of the data, or 50GB. When my product team loads more data to meet their "doubling" requirement, each node should climb back up to about 100GB. A single copy of the data is now 200GB. But with each node responsible for 50%, each 200GB drive still only has 100GB.
Example #2:
Let's say that the cluster above with 6 nodes is capable of supporting an operational load of 10,000 operations per second (ops). My product team comes to me again, saying that for the holiday season they project needing to support 20,000 ops. As the current cluster can only support half of that, it will choke under the intense throughput, and one or more nodes may crash.
As Cassandra scales linearly, the way to achieve this is to (again) double the size of the cluster. So I increase it from 6 nodes to 12 nodes, while still maintaining my RF of 3. After running some performance testing, they verify that it can indeed support 20,000 ops. As a single copy of my data is 200GB, the total data footprint remains 600GB. With 12 nodes, each node is now responsible for only 25% of the data, or 50GB.
So scalability is the advantage. But how about modeling the data? The main idea in distributed database modeling, is two-fold:
Build a table structure which is keyed to distribute well. We don't want uneven amounts of data on each node.
Build the key on the table so that it matches our query requirements.
One of the drawbacks of a NoSQL database, is that your query patterns become restricted. In an effort to cut down on network time, you want to ensure that your query can be served by a single node.
This usually means using natural keys, as those are more in-line with what you are asking of your data. Surrogate keys (alpha, numerical, or both) distribute well, but aren't really useful for querying. User "Bob Jones" might be id "3582346556230" in my system. But when I want to query Bob's data, I'll probably never want to ask for it by "3582346556230," because that doesn't mean anything to the application or the context in which the data is used.
Also, you want your data to have structure. Unstructured data is un-queryable data. Simple as that. If you want unstructured data to be queryable, you need to parse-out its identifying aspects to be used as keys. You don't want to "search" or run SELECT * FROM queries. Full table scans in NoSQL databases are even more resource consuming than their RDBMS counterparts, because they have to check each node, sort through replicas, and thus incurs extra network time.
NoSQL databases give you the ability to scale (for increases in data or demand). But it's important to note that their scalability can make some things (which a RDBMS might be good at), more difficult than you're used to.
The R in RDBMS, relational, is the biggest thing missing from Mongo. There's very little to no way to make the database understand how entries in different tables collections relate to each other. One of the big strengths of RDBMSs is the ability to define constraints which the database will enforce, most typically foreign key constraints which ensure that an id in one table refers to an existing id in another table.
One requirement for the database to be able to enforce such constraints is obviously that everything needs to go through one source of truth and there needs to be one central entity cross-checking the data; it cannot be decentralised since discrepancies between two different primary sources can lead to data inconsistencies.
In Mongo, each data blob is pretty much independent. It doesn't refer to other entries in any way enforced by the database. Mongo also has weak to no ACID guarantees, meaning there's little protection against race condition inserts or updates. In a word: Mongo makes little guarantees with regards to data consistency and mostly offloads these kinds of concerns to the application layer. That allows it to work more decentralised.
E.g. a good way to scale Mongo is to have many secondary servers which replicate a primary server for read-only access. There's no guarantee that the primary and secondaries will be in sync at any given time, it may take a couple of seconds for data written to the primary to trickle to the secondaries. But this allows you to have a virtually unlimited number of secondary read-only servers, which is great for scaling a database under heavy read load.
The way specifically Mongo handles its clusters also allows it to have a very high uptime, as the cluster will reorganise itself into primaries and secondaries automatically if a server goes down. This even allows for rolling maintenance without any client downtime.
Not having to enforce complex constraints or transaction consistency during writing also allows a more fire-and-forget style of writing to the database, which can be much faster. Again, at the cost of allowing inconsistent data. Which is why most writing pretty much means atomically updating a single document in a collection with no guarantees about other documents, which is something of a different paradigm than RDBMS transactional updates across many tables.
I would not recommend Mongo for storing things like a financial ledger, which heavily relies on transactional guarantees for consistency. However, things like Twitter are a perfect case for it: many independent snippets of data which must be read by a massive number of clients.

Why using Locking in MongoDB?

MoongoDB is from the NoSql era, and Lock is something related to RDBMS? from Wikipedia:
Optimistic concurrency control (OCC) is a concurrency control method for relational database management systems...
So why do i find in PyMongo is_locked , and even in driver that makes non-blocking calls, Lock still exists, Motor has is_locked.
NoSQL does not mean automatically no locks.
There always some operations that do require a lock.
For example building of index
And official MongoDB documentation is a more reliable source than wikipedia(none offense meant to wikipedia :) )
http://docs.mongodb.org/manual/faq/concurrency/
Mongo does in-place updates, so it needs to lock in order to modify the database. There are other things that need locks, so read the link #Tigra provided for more info.
This is pretty standard as far as databases and it isn't an RDBMS-specific thing (Redis also does this, but on a per-key basis).
There are plans to implement collection-level (instead of database-level) locking: https://jira.mongodb.org/browse/SERVER-1240
Some databases, like CouchDB, get around the locking problem by only appending new documents. They create a new, unique revision id and once the document is finished writing, the database points to the new revision. I'm sure there's some kind of concurrency control when changing which revision is used, but it doesn't need to block the database to do that. There are certain downsides to this, such as compaction needing to be run regularly.
MongoDB implements a Database level locking system. This means that operations which are not atomic will lock on a per database level, unlike SQL whereby most techs lock on a table level for basic operations.
In-place updates only occur on certain operators - $set being one of them, MongoDB documentation did used to have a page that displayed all of them but I can't find it now.
MongoDB currently implements a read/write lock whereby each is separate but they can block each other.
Locks are utterly vital to any database, for example, how can you ensure a consistent read of a document if it is currently being written to? And if you write to the document how do you ensure that you only apply that single update at once and not multiple updates at the same time?
I am unsure how version control can stop this in CouchDB, locks are really quite vital for a consistent read and are separate to version control, i.e. what if you wish to apply a read lock to the same version or read a document that is currently being written to a new revision? You will obviously see a lock queue appear. Even though version control might help a little with write lock saturation there will still be a write lock and it will still need to work on a level.
As for concurrency features; MongoDB has the ability (for one), if the data is not in RAM, to subside a operation for other operations. This means that locks will not just sit there waiting for data to be paged in and other operations will run in the mean time.
As a side note, MongoDB actually has more locks than this, it also has a JavaScript lock which is global and blocking, it does not have the normal concurrency features of regular locks.
and even in driver that makes non-blocking calls
Hmm I think you might be confused by what is meant as a "non-blocking" application or server: http://en.wikipedia.org/wiki/Non-blocking_algorithm

Is there a reliable (single server) MongoDB alternative?

I like the idea of document databases, especially MongoDB. It allows for faster development as we don't have to adjust database schema's. However MongoDB doesn't support multi-document transactions and doesn't guarantee that modifications get written to disk immediately like normal databases (I know that you can make the time between flushes quite small, but it's still no guarantee).
Most of our projects are not that big that they need things like multi-server environments. So keeping that in mind. Are there any single server MongoDB-like document databases that support multi-document transactions and reliable flushing to disk?
It might be worthwhile to look at ArangoDB. It is a multi model database with a flexible data model for documents, graphs, and key-values. With respect to your specific requirements, ArangoDB database has full ACID transactions which can span over multiple documents in the same collection as well as over multiple collections (see Transactions in ArangoDB). That is, you can execute a group of manipulations to your documents together in a transaction and have guaranteed atomicity and isolation. If you additionally set waitForSync: true
(as described further down on said page), you get a guaranteed sync to disk before your transaction reports completion. Note that this happens automatically if your transaction spans multiple collections.
A very short answer to your specific (but brief) requirements:
Are there any single server MongoDB-like document databases that support multi-document transactions and reliable flushing to disk?
RavenDB [1] provides support for multi-doc transactions [2]. Unfortunately I don't know it handles durability.
CouchDB [3] provides durable writes, but no multi-doc transactions
RethinkDB [4] provides durable writes, but no multi-doc transactions.
So you might wonder what's different about these 3 solutions? Most of the time is their querying support (I'd say RethinkDB has the most advanced one covering pretty much all types of queries: sub-queries, JOINs, aggregations, etc.), their history (read: production readiness -- here I'd probably say CouchDB is in the lead), their distribution model (you mentioned that's not interesting for you), their licensing (RavenDB: commercial, CouchDB: Apache License, Rethinkdb: AGPL).
The next step would be for you to briefly look over their feature set and figure out which one comes close to your needs and give it a try.
I have some experience with CouchDB and ArangoDB which I can share:
You can run CouchDB with durability turned on (delayed_commits = false) so it will also sync your data to disk.
However, this is a global setting so it affects all writes. AFAIK you cannot set it on a per-collection level (the CouchDB term for "collection" would be "database").
Regarding multi-document operations: CouchDB has MVCC, so reading multiple documents from the same database provides a consistent result even in the face of parallel writers.
Writing multiple documents to the same database can also be made transactional for special cases, e.g. when using the bulk documents API.
But there is no way to execute cross-database operations in CouchDB. This is just not intended.
On ArangoDB: in ArangoDB you can turn on immediate syncing to disk on a per-collection level: you can turn it on for collections which you cannot tolerate any data loss in. You can turn immediate syncing off for not-so-important collections for performance reasons. It will then still sync modifications to disk frequently, but not immediately. It provides multi-document and multi-collection transactions.
Checkout the following:
arangodb
rethinkdb
I would suggest you look at Couchbase.
Couchbase can be run single server & you can add nodes later if you want.
Couchbase has memcached integrated so you have fast caching of common data, with a reliable method of writing updates to disk.
They also have a new query language (in development but you can use it now) called NQL ("Nickel") that gives you SQL like access, if that's important to you.
With cross-datacenter replication, you can keep two DBs on different machines or data centers in sync, which is good for having an offsite backup. This also allows you to add elastic search if you wish to have a full text search engine for those types of queries.
In short, Couchbase is a pretty complete solution, all open source and has intelligent (in my opinion) architecture for addressing the typical problems with distributed databases (e.g.: every document is "owned" by a given node, so all changes go to that node, and then the updates are replicated, this is better, I think, than say Riak where you can have updates go to two nodes and then have to be reconciled.)
You can use Couchbase on one node to run the database for many projects by separating the projects into different buckets.
there are so many nosql databases and definitely its hard to choose one. You will have to come up with proper requirements and know exactly what you want.
Following link compared almost all the popular nosql databases
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
I hope this helps.
Berkeley DB is one we used. It supports ACID. It does have transactions, but as to your term "multidocument" applies, I'm not entirely sure. I imagine so long as each database (i.e. individual document) shares the same BDB environment (i.e. where transactions are stored) then maybe that gets what you want. BDB does have other tradeoffs though. With fully durability and high concurrency, commits are pretty slow.
Give a try to: http://www.orientdb.org/
"OrientDB has the flexibility of the Document databases and the power of the Graph databases to manage relationships. It can work in schema-less mode, schema-full or a mix of both. Supports advanced features such as ACID Transactions, Fast Indexes, Native and SQL queries. It imports and exports documents in JSON. OrientDB uses a new indexing algorithm called MVRB-Tree, derived from the Red-Black Tree and from the B+Tree with benefits of both: fast insertion and ultra fast lookup".
You do not have to adjust schemas in document data stores, but that does not mean you do not need some sort of schema as you probably want to do something meaningful with your data. It appears you would like an ACID database. If you have relational data, and you need transactions with that data, well it sounds very much like you need a relational database.
With "NoSQL" databases like Mongo, you are giving up ACID for features like many writable replicas, sharding, and quick accessing of document data. Sounds like you do not benefit from that so why take the tradeoff? A lot of people have been doing hybrid approaches lately with PostgreSQL by storing documents in a relational table as blobs of JSON. With this, you can have the advantage of storing your data as not strictly structured columns where it is not needed.
So if you have multiple documents that you need to be transactional on update, you can column out the keys, and have a column "document" or something where it is simply a blob of JSON where you serialize and deserialize it. This is not criticizing Mongo or other document stores as a database but it is just not really a good choice for transactional multidocument data. MarkLogic I believe does ACID over multiple documents too.
I think a lot of people find appeal with mongodb due to the schema-less-ness but I think in the end they get bit by trying to shoehorn a relational model into it. So as always the DB choice depends on how your data is.
If I were you I would take a close look at Solr. The underlying data-layer (Lucene) is by far the most mature of the NoSQL databases, and Solr makes installing, configuring, and integrating a single-host lucene store trivial.
In answer to your question, it supports user-delineated transactions. The read-optimised nature of Lucene can make it unsuitable for many applications, but most of those are well suited to Solr/Lucene+[SQL,Cassandra,CouchDB,RDF] depending on the requirements.
Personally I tend to start with Solr+SQL or Solr+RDF, but I know some people who love the whole NodeJS+CouchDB style, and I am convinced of the value of the flexibility that provides.
The bottom line is that there are enough NoSQL and SQL-extensions out there that care about data integrity to satisfy any requirement you have without you having to compromise you or your users' data.
Personally I believe you really need to check what your requirements are.
Due to the dynamics of how the OS of your server works it is complicated to say that everything "immediately" goes to disk even when you tell it to. certainly I know ACID techs like SQL are vulnerable to partial corruption through unfinished business and losing operations within a specific window when a single server goes down, unfortunately this is one of the problems of using a single server; you have no choice but to accept it.
I should note that a transaction does not ensure that your server will receive the entire data before failure ( http://en.wikipedia.org/wiki/Database_transaction ), I mean what if the server dies part way through a transaction?
You can perform a safe rollback based on constraints with transactions but few databases will provide the ability to continue playing the transaction unless they have already received all necessary data for it (which isn't normally the case), by which time the data might even be stale anyway.
In fact due to the weight of some transactions and the amount of queries performed within them I reckon you might get a greater window of operational loss using transactions than you might from the 60ms write to disk window on MongoDB at times. But of course that depends upon abuse, however, just like stored procedures, this abuse is common place.
Transactions shine on cascading deletes and typical scenarios like transferring money in a bank account, however, cascadable deletes are normally better done (as most sites do) by a cronjob with the application marking the row as deleted (to avoid the rollback of a transaction showing the deleted data back to the user again); this way you can do a lot of stuff to ensure consistency that you cannot in real-time do while the user is using your application.
So you should really question why you need a tech and what it will succeed in doing, atm the brevity of your question tells me your not sure about your requirements completely.

Database for long running transactions with huge updates

I build a tool for data extraction and transformation. Typical use case - transactionally processing lots of data.
Numbers are - about 10sec - 5min duration, 200-10000 row updated (long duration caused not by the database itself but by outside services that used during transaction).
There are two types of agents that access database - multiple read agents, and only one write agent (so, there are never multiple concurrent write).
During the transaction:
Read agents should be able to read database and see it in the current state.
Write agent should be able to read database (it does both - read and write during transaction) and see it in the new (not yet committed) state.
Is PostgreSQL a good choice for that type of load? I know it uses MVCC - so it should be ok in general, but is it ok to use long and big transactions extensively?
What other open-source transactional databases may be a good choice (I am not limited to SQL)?
P.S.
I do not know if the sharding may affect the performance. The database will be sharded. For every shard there will be multiple readers and only one writer, but multiple different shards can be written to at the same time.
I know that it's better not to use outside services during transaction, but in that case - it's the goal. The database used as a reliable and consistent index for some heavy, huge, slow and eventually-consistent data processing tool.
Huge disclaimer: as always, only real life test can tell you the truth.
But, I think PostgreSQL will not let you down, if you use most recent version (at least 9.1, better 9.2) and tune it properly.
I have somewhat similar load in my server, but with slightly worse R/W ratio: about 10:1. Transactions range from few milliseconds up to 1 hour (and sometimes even more), and one transaction can insert or update up to 100k rows. Total number of concurrent writers with long transactions can reach 10 and more.
So far so good - I don't really have any serious issues, performance is great (certainly not worse than I expected).
What really helps is that my hot working data set almost fits into available memory.
So, give it a try, it should work great for your load.
Have a look at this link. Maximum transaction size in PostgreSQL
Basically there can be some technical limits on the software side to how large your transaction can be.

Main Memory DB vs Object DB

I'm currently trying to pick a database vendor.
I'm just seeking some personal opinions from fellow database developers out there.
My question is especially targeted towards people who:
1) have used Main Memory DB (MMDB) that supports replicating to disk (hybrid) before (i.e. ExtremeDB)
or
2) have used Versant Object Database and/or Objectivity Database and/or Progress ObjectStore
and the question is really: if you could recommend a database vendor, based on your experience, that would suit my application.
My application is a commercial real-time (read: high-performance) object-oriented C++ GIS kind of app, where we need to do a lot of lat/lon search (i.e. given an area, find all matching targets within the area...R-Tree index).
The types of data that I would like to store into the database are all modeled as objects and they make use of std::list and std::vector, so naturally, Object Database seems to make sense. I have read through enough articles to convince myself that a traditional RDBMS probably isnt what I'm really looking for in terms of
performance (joins or multiple
tables for dynamic-length data like
list/vector)
ease of programming
(impedance mismatch)
However, in terms of performance,
Input data is being fed into the system at about 40 MB/s.
Hence, the system will also be doing insert into the database at the rate of roughly 350 inserts per second (where each object varies from 64KB to 128KB),
Database will consistently be searched and updated via multiple threads.
From my understanding, all of the Object DBs I have listed here use cache for storing database objects. ExtremeDB claims that since it's designed especially for memory, it can avoid overhead of caching logic, etc. See more by googling: Main Memory vs. RAM-Disk Databases: A Linux-based Benchmark
So..I'm just a bit confused. Can Object DBs be used in real-time system? Is it as "fast" as MMDB?
Fundamentally, I difference between a MMDB and a OODB is that the MMDB has the expectation that all of its data is based in RAM, but persisted to disk at some point. Whereas an OODB is more conventional in that there's no expectation of the entire DB fitting in to RAM.
The MMDB can leverage this by giving up on the concept that the persisted data doesn't necessarily have to "match" the in RAM data.
The way anything with persistence is going to work, is that it has to write the data to disk on update in some fashion.
Almost all DBs use some kind of log for this. These logs are basically "raw" pages of data, or perhaps individual transactions, appended to a file. When the file gets "too big", a new file is started.
Once the logs are properly consolidated in to the main store, the logs are discarded (or reused).
Now, a crude, in RAM DB can exist simply by appending transactions to a log file, and when it's restarted, it just loads the log in to RAM. So, in essence, the log file IS the database.
The downside of this technique is the longer and more transactions you have, the bigger your log/DB is, and thus the longer the DB startup time. But, ideally, you can also "snapshot" the current state, which eliminates all of the logs up to date, and effectively compresses them.
In this manner, all the routine operations of the DB have to manage is appending pages to logs, rather than updating other disk pages, index pages, etc. Since, ideally, most systems don't need to "Start up" that often, perhaps start up time is less of an issue.
So, in this way, a MMDB can be faster than an OODB who has a different contract with the disk, maintaining logs and disk pages. In this way, an OODB can be slower even if the entire DB fits in to RAM and is properly cached, simply because you incur disk operations outside of the log operations during normal operations, vs a MMDB where these operations happen as a "maintenance" task, which can be scheduled during down time and/or quiet time.
As to whether either of these systems can meet you actual performance needs, I can't say.
The back ends of databases (reader and writer processes, caching, lock managing, txn log files, ACID semantics) are the same, so RDBs and OODB are actually very similar here. The difference is the interface to the application programmer. Is your data model complicated, consists of lots of classes with real inheritance relationships? Then OO is good. Is it relatively flat and simple? Then go RDB. What is the nature of the relationships? Is it pointer-like and set like? Then go RDB. Is is more complicated, like (ordered) list, array, map? Then you should go OO. Also, do you have a stand-alone application with no need to integrate with other apps? Then OO is ok. Do you have to share data with other apps (i.e. several apps access the same database)? Then that's a deal-breaker for OO, and you should stick with RDB. Is the schema of your database stable or do you expect it to evolve frequently? OODBs are bad ad schema evolution, so if you expect frequent changes, stick with RDBs.