I like the idea of document databases, especially MongoDB. It allows for faster development as we don't have to adjust database schema's. However MongoDB doesn't support multi-document transactions and doesn't guarantee that modifications get written to disk immediately like normal databases (I know that you can make the time between flushes quite small, but it's still no guarantee).
Most of our projects are not that big that they need things like multi-server environments. So keeping that in mind. Are there any single server MongoDB-like document databases that support multi-document transactions and reliable flushing to disk?
It might be worthwhile to look at ArangoDB. It is a multi model database with a flexible data model for documents, graphs, and key-values. With respect to your specific requirements, ArangoDB database has full ACID transactions which can span over multiple documents in the same collection as well as over multiple collections (see Transactions in ArangoDB). That is, you can execute a group of manipulations to your documents together in a transaction and have guaranteed atomicity and isolation. If you additionally set waitForSync: true
(as described further down on said page), you get a guaranteed sync to disk before your transaction reports completion. Note that this happens automatically if your transaction spans multiple collections.
A very short answer to your specific (but brief) requirements:
Are there any single server MongoDB-like document databases that support multi-document transactions and reliable flushing to disk?
RavenDB [1] provides support for multi-doc transactions [2]. Unfortunately I don't know it handles durability.
CouchDB [3] provides durable writes, but no multi-doc transactions
RethinkDB [4] provides durable writes, but no multi-doc transactions.
So you might wonder what's different about these 3 solutions? Most of the time is their querying support (I'd say RethinkDB has the most advanced one covering pretty much all types of queries: sub-queries, JOINs, aggregations, etc.), their history (read: production readiness -- here I'd probably say CouchDB is in the lead), their distribution model (you mentioned that's not interesting for you), their licensing (RavenDB: commercial, CouchDB: Apache License, Rethinkdb: AGPL).
The next step would be for you to briefly look over their feature set and figure out which one comes close to your needs and give it a try.
I have some experience with CouchDB and ArangoDB which I can share:
You can run CouchDB with durability turned on (delayed_commits = false) so it will also sync your data to disk.
However, this is a global setting so it affects all writes. AFAIK you cannot set it on a per-collection level (the CouchDB term for "collection" would be "database").
Regarding multi-document operations: CouchDB has MVCC, so reading multiple documents from the same database provides a consistent result even in the face of parallel writers.
Writing multiple documents to the same database can also be made transactional for special cases, e.g. when using the bulk documents API.
But there is no way to execute cross-database operations in CouchDB. This is just not intended.
On ArangoDB: in ArangoDB you can turn on immediate syncing to disk on a per-collection level: you can turn it on for collections which you cannot tolerate any data loss in. You can turn immediate syncing off for not-so-important collections for performance reasons. It will then still sync modifications to disk frequently, but not immediately. It provides multi-document and multi-collection transactions.
Checkout the following:
arangodb
rethinkdb
I would suggest you look at Couchbase.
Couchbase can be run single server & you can add nodes later if you want.
Couchbase has memcached integrated so you have fast caching of common data, with a reliable method of writing updates to disk.
They also have a new query language (in development but you can use it now) called NQL ("Nickel") that gives you SQL like access, if that's important to you.
With cross-datacenter replication, you can keep two DBs on different machines or data centers in sync, which is good for having an offsite backup. This also allows you to add elastic search if you wish to have a full text search engine for those types of queries.
In short, Couchbase is a pretty complete solution, all open source and has intelligent (in my opinion) architecture for addressing the typical problems with distributed databases (e.g.: every document is "owned" by a given node, so all changes go to that node, and then the updates are replicated, this is better, I think, than say Riak where you can have updates go to two nodes and then have to be reconciled.)
You can use Couchbase on one node to run the database for many projects by separating the projects into different buckets.
there are so many nosql databases and definitely its hard to choose one. You will have to come up with proper requirements and know exactly what you want.
Following link compared almost all the popular nosql databases
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
I hope this helps.
Berkeley DB is one we used. It supports ACID. It does have transactions, but as to your term "multidocument" applies, I'm not entirely sure. I imagine so long as each database (i.e. individual document) shares the same BDB environment (i.e. where transactions are stored) then maybe that gets what you want. BDB does have other tradeoffs though. With fully durability and high concurrency, commits are pretty slow.
Give a try to: http://www.orientdb.org/
"OrientDB has the flexibility of the Document databases and the power of the Graph databases to manage relationships. It can work in schema-less mode, schema-full or a mix of both. Supports advanced features such as ACID Transactions, Fast Indexes, Native and SQL queries. It imports and exports documents in JSON. OrientDB uses a new indexing algorithm called MVRB-Tree, derived from the Red-Black Tree and from the B+Tree with benefits of both: fast insertion and ultra fast lookup".
You do not have to adjust schemas in document data stores, but that does not mean you do not need some sort of schema as you probably want to do something meaningful with your data. It appears you would like an ACID database. If you have relational data, and you need transactions with that data, well it sounds very much like you need a relational database.
With "NoSQL" databases like Mongo, you are giving up ACID for features like many writable replicas, sharding, and quick accessing of document data. Sounds like you do not benefit from that so why take the tradeoff? A lot of people have been doing hybrid approaches lately with PostgreSQL by storing documents in a relational table as blobs of JSON. With this, you can have the advantage of storing your data as not strictly structured columns where it is not needed.
So if you have multiple documents that you need to be transactional on update, you can column out the keys, and have a column "document" or something where it is simply a blob of JSON where you serialize and deserialize it. This is not criticizing Mongo or other document stores as a database but it is just not really a good choice for transactional multidocument data. MarkLogic I believe does ACID over multiple documents too.
I think a lot of people find appeal with mongodb due to the schema-less-ness but I think in the end they get bit by trying to shoehorn a relational model into it. So as always the DB choice depends on how your data is.
If I were you I would take a close look at Solr. The underlying data-layer (Lucene) is by far the most mature of the NoSQL databases, and Solr makes installing, configuring, and integrating a single-host lucene store trivial.
In answer to your question, it supports user-delineated transactions. The read-optimised nature of Lucene can make it unsuitable for many applications, but most of those are well suited to Solr/Lucene+[SQL,Cassandra,CouchDB,RDF] depending on the requirements.
Personally I tend to start with Solr+SQL or Solr+RDF, but I know some people who love the whole NodeJS+CouchDB style, and I am convinced of the value of the flexibility that provides.
The bottom line is that there are enough NoSQL and SQL-extensions out there that care about data integrity to satisfy any requirement you have without you having to compromise you or your users' data.
Personally I believe you really need to check what your requirements are.
Due to the dynamics of how the OS of your server works it is complicated to say that everything "immediately" goes to disk even when you tell it to. certainly I know ACID techs like SQL are vulnerable to partial corruption through unfinished business and losing operations within a specific window when a single server goes down, unfortunately this is one of the problems of using a single server; you have no choice but to accept it.
I should note that a transaction does not ensure that your server will receive the entire data before failure ( http://en.wikipedia.org/wiki/Database_transaction ), I mean what if the server dies part way through a transaction?
You can perform a safe rollback based on constraints with transactions but few databases will provide the ability to continue playing the transaction unless they have already received all necessary data for it (which isn't normally the case), by which time the data might even be stale anyway.
In fact due to the weight of some transactions and the amount of queries performed within them I reckon you might get a greater window of operational loss using transactions than you might from the 60ms write to disk window on MongoDB at times. But of course that depends upon abuse, however, just like stored procedures, this abuse is common place.
Transactions shine on cascading deletes and typical scenarios like transferring money in a bank account, however, cascadable deletes are normally better done (as most sites do) by a cronjob with the application marking the row as deleted (to avoid the rollback of a transaction showing the deleted data back to the user again); this way you can do a lot of stuff to ensure consistency that you cannot in real-time do while the user is using your application.
So you should really question why you need a tech and what it will succeed in doing, atm the brevity of your question tells me your not sure about your requirements completely.
Related
I am developing a JAVA based web application. The primary aim is to have inventory for products being sold on multiple websites called channels. We will act as manager for all these channels.
What we need is:
Queues to manage inventory updates for each channel.
Inventory table which has a correct snapshot of allocation on each channel.
Keeping Session Ids and other fast access data in a cache.
Providing a facebook like dashboard(XMPP) to keep the seller updated asap.
The solutions i am looking at are postgres(our db till now in a synchronous replication mode), NoSQL solutions like Cassandra, Redis, CouchDB and MongoDB.
My constraints are:
Inventory updates cannot be lost.
Job Queues should be executed in order and preferably never lost.
Easy/Fast development and future maintenance.
I am open to any suggestions. thanks in advance.
Queues to manage inventory updates for each channel.
This is not necessarily a database issue. You might be better off looking at a messaging system(e.g. RabbitMQ)
Inventory table which has a correct snapshot of allocation on each channel.
Keeping Session Ids and other fast access data in a cache.
session data should probably be put in a separate database more suitable for the task(e.g. memcached, redis, etc)
There is no one-size-fits-all DB
Providing a facebook like dashboard(XMPP) to keep the seller updated asap.
My constraints are:
1. Inventory updates cannot be lost.
There are 3 ways to answer this question:
This feature must be provided by your application. The database can guarantee that a bad record is rejected and rolled back, but not guarantee that every query will get entered.
The app will have to be smart enough to recognize when an error happens and try again.
some DBs store records in memory and then flush memory to disk peridocally, this could lead to data loss in the case of a power failure. (e.g Mongo works this way by default unless you enable journaling. CouchDB always appends to the records(even a delete is a flag appended to the record so data loss is extremely difficult))
Some DBs are designed to be extremely reliable, even if an earthquake, hurricane or other natural disaster strikes, they remain durable. these include Cassandra, Hbase, Riak, Hadoop, etc
Which type of durability are your referring to?
Job Queues should be executed in order and preferably never lost.
Most noSQL solutions prefer to run in parallel. so you have two options here.
1. use a DB that locks the entire table for every query(slower)
2. build your app to be smarter or evented(client side sequential queuing)
Easy/Fast development and future maintenance.
generally, you will find that SQL is faster to develop at first, but changes can be harder to implement
noSQL may require a little more planning, but is easier to do ad hoc queries or schema changes.
The questions you probably need to ask yourself are more like:
"Will I need to have intense queries or deep analysis that a Map/Reduce is better suited to?"
"will I need to my change my schema frequently?
"is my data highly relational? in what way?"
"does the vendor behind my chosen DB have enough experience to help me when I need it?"
"will I need special feature such as GeoSpatial indexing, full text search, etc?"
"how close to realtime will I need my data? will it hurt if I don't see the latest records show up in my queries until 1sec later? what level of latency is acceptable?"
"what do I really need in terms of fail-over"
"how big is my data? will it fit in memory? will it fit on one computer? is each individual record large or small?
"how often will my data change? is this an archive?"
If you are going to have multiple customers(channels?) each with their own inventory schemas, a document based DB might have it's advantages. I remember one time I looked at an ecommerce system with inventory and it had almost 235 tables!
Then again, if you have certain relational data, a SQL solution can really have some advantages too.
I can certainly see how I could build a solution using mongo, couch, riak or orientdb with the given constraints. But as for which is the best? I would try talking directly DB vendors, and maybe watch the nosql tapes
Addressing your constraints:
Most NoSQL solutions give you a configurable tradeoff of consistency vs. performance. In MongoDB, for instance, you can decide how durable a write should be. If you want to, you can force the write to be fsync'ed on all your replica set servers. On the other extreme, you can choose to send the command and don't even wait for the server's response.
Executing job queues in order seems to be an application code issue. I'd say a timestamp in the db and an order by type of query should do for most applications. If you have multiple application servers and your queues need to be perfect, you'd have to use a truly distributed algorithm that provides ordering, but that is not a typical requirement, and it's very tricky indeed.
We've been using MongoDB for some time now, and I'm convinced this gives your app development speed a real boost. There's no big difference in maintenance, maintaining data is a pain either way. Not having a schema gives you added flexibility (lazy migrations), but it's more elaborate and requires some care.
In summary, I'd say you can do it both ways. The NoSQL is more code driven, and transactions and relational integrity are mostly managed by your code. If you're uncomfortable with that, go for a relational DB.
However, if you're data grows huge, you'll have to code some of this logic manually because you probably wouldn't want to do real-time joins on a 10B row database. Still, you can implement that with SQL as well.
A good way to find the boundary for different databases is to consider what you can cache. Data that can be cached and reconstructed at any time are a great way to start introducing a new layer, because there's no big risks there. Also, cached data usually doesn't keep any relations so you're not sacrificing any consistency here.
NoSQL is not correct for this application.
I mean, you can use it sure, but you will end up re-implementing a lot of what SQL offers for you. For example I see a lot of relations there. You also want ACID (although some NoSQL solutions do offer that).
There is no reason you can't use both - keep relational data in relational databases, and non-relational data in key/value stores.
I've very recently fallen in love with CouchDB. I'm pretty excited by its enormous benefits and by its beauty. Now I want to make sure that I haven't missed any show-stopping disadvantages.
What comes to your mind? Attached is a list of points that I have collected. Is there anything to add?
Blog posts from as late as 2010 claim "not mature enough" (whatever that's worth).
Slower than in-memory DBMS.
In-place updates require server-side logic (update handlers).
Trades disk vs. speed: Databases can become huge compared to other DBMS (compaction functionality exists, though).
"Only" eventual consistency.
Temporary views on large datasets are very slow.
Replication of large databases may fail.
Map/reduce paradigm requires rethinking (only for completeness).
The only point that worries me is #3 (in-place updates), because it's quite inconvenient.
The data is in JSON
Which means that documents are quite large (BigData, network bandwidth, speed), and having descriptive key names actually hurts, since they add up to the document size.
No built in full text search
Although there are ways: couchdb-lucene, elasticsearch
plus some more:
It doesn't support transactions
It means that enforcing uniqueness of one field across all documents is not safe, for example, enforcing that a username is unique. Another consequence of CouchDB's inability to support the typical notion of a transaction is that things like inc/decrementing a value and saving it back are also dangerous. There aren't many instances that we would want to simply inc/decrement some value where we couldn't just store the individual documents separately and aggregate them with a view.
Relational data
If the data makes a lot of sense to be in 3rd normal form, and we try to follow that form in CouchDB, we are going to run into a lot of trouble. A possible way to solve this problem is with view collations, but we might constantly going to be fighting with the system. If the data can be reformatted to be much more denormalized, then CouchDB will work fine.
Data warehouse
The problem with this is that temporary views in CouchDB on large datasets are really slow. Using CouchDB and permanent views could work quite well. However, in most of cases, a Column-Oriented Database of some sort is a much better tool for the data warehousing job.
But CouchDB Rocks!
But don't let it discorage you: NoSQL DBs that are written in Erlang (CouchDB, Riak) are the best, since Erlang is meant for distributed systems. Have fun with Couch!
2 more things, which make me cry when using CouchDB (though it's awesome):
It is not designed for frequently updated data
It doesn't have built-in fulltext search
Lack of reader ACLs (does exist for writers, however)
As an old Lotus Domino pro I was looking to CouchDB as an alternative for a new project I'm kicking off and found the limits on readers to be very weak in Couch vs. Domino. In my app security is an important consideration and Couch would require a middleware layer to handle reader security.
If you have database in which it's okay that all defined users can see all the documents, then Couch looks like an interesting platform.
If restricting reads is needed then you'll need to look to a middleware solution or consider another alternative.
Note to CouchDB developers: Improve the platform security options. I realize they will diminish performance when used but note that and make the option available.
Now back to determining which database to use...
currently no support for ad-hoc queries (might change with advent of UnQL)
lack of binary protocol support for faster communication
It's nothing to do with CouchDB itself, but being a relative newcomer on the scene means that most sysadmins are still unfamiliar with it and won't allow it anywhere near "their" data centers. If you're in a situation where you're deploying to an environment you don't control yourself, this can be quite the battle.
Lack of support for data archiving - No official support for data
archiving is provided with couch db open source distribution.
Deleting records from db is not straightforward
No option to set a expire (TTL) flag for documents
Is there any sense to use mongodb in a system with great amount of entities (50+) connected to each other, for example in CRM. Any "success stories"?
There is a need of intensive writing and fast selection from high number of records for the some kind of analytics system.
It is definitely hard to provide a recommendation with such open question; however, you can analyze some of the advantages of MongoDB over other database, most likely you are considering Mongo as an alternative to a relational database like Oracle or SQL Server.
From http://mongodb.org you can see the main characteristics...
Document Oriented Storage: Which basically means you can have a single or multiple documents representing your data structures. One very important think here is that the schema is dynamic, that is you can add more attributes without having to change your database. Pretty useful for adding flexibility to your system.
Full index support: We wouldn't expect any less than full support for indices, right?
Replication and High availability; Sharding: Very critical elements for availability, disaster recovery, and to guarantee the
ability to grow with your system.
Querying: Again, pretty critical requirement. Need to make sure you account for the dynamic schema. You will need to consider in
your queries that some attributes are not defined for all documents
(remember dynamic schema?).
Map/Reduce: Very useful for
analytics. Recommended for aggregating large amounts of data.
Should be used offline, meaning, you don't run a live query against a
map/reduce function, otherwise you will be sitting for a while
waiting. But it is great to run batch analytics on your system.
GridFS: A great way of storing binary data. Automatically generates MD5's for your files, splits them in chunks, and can add
metadata. Your files will stay with your database.
Also, the Geolocation indices are great. You can define lon,lat attributes and do searches on those.
Now it is up to you to see if these features are good for your needs, or you rather stay with a well know relational system.
Before jumping into a solution you should experiment and build some prototypes. You will see very early what challenges you'll have in your design.
Hope this helps.
I am working on a project were we are batch loading and storing huge volume of data in Oracle database which is constantly getting queried via Hibernate against this 100+ million records table (the reads are much more frequent than writes).
To speed things up we are using Lucene for some of queries (especially geo bounding box queries) and Hibernate second level cache but thats still not enough. We still have bottleneck in Hibernate queries against Oracle (we dont cache 100+ million table entities in Hibernate second level cache due to lack of that much memory).
What additional NoSQL solutions (apart from Lucene) I can leverage in this situation?
Some options I am thinking of are:
Use distributed ehcache (Terracotta) for Hibernate second level to leverage more memory across machines and reduce duplicate caches (right now each VM has its own cache).
To completely use in memory SQL database like H2 but unfortunately those solutions require loading 100+ mln tables into single VM.
Use Lucene for querying and BigTable (or distributed hashmap) for entity lookup by id.
What BigTable implementation will be suitable for this? I was considering HBase.
Use MongoDB for storing data and for querying and lookup by id.
recommending Cassandra with ElasticSearch for a scalable system (100 million is nothing for them). Use cassandra for all your data and ES for ad hoc and geo queries. Then you can kill your entire legacy stack. You may need a MQ system like rabbitmq for data sync between Cass. and ES.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. THe work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing Oracle on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. Look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.
As you suggest MongoDB (or any similar NoSQL persistence solution) is an appropriate fit for you. We've run tests with significantly larger data sets than the one you're suggesting on MongoDB and it works fine. Especially if you're read heavy MongoDB's sharding and/or distributing reads across replicate set members will allow you to speed up your queries significantly. If your usecase allows for keeping your indexes right balanced your goal of getting close to 20ms queries should become feasable without further caching.
You should also check out the Lily project (lilyproject.org). They have integrated HBase with Solr. Internally they use message queues to keep Solr in sync with HBase. This allows them to have the speed of solr indexing (sharding and replication), backed by a highly reliable data storage system.
you could group requests & split them specific to a set of data & have a single (or a group of servers) process that, here you can have the data available in the cache to improve performance.
e.g.,
say, employee & availability data are handled using 10 tables, these can be handled b a small group of server (s) when you configure hibernate cache to load & handle requests.
for this to work you need a load balancer (which balances load by business scenario).
not sure how much of it can be implemented here.
At the 100M records your bottleneck is likely Hibernate, not Oracle. Our customers routinely have billions of records in the individual fact tables of our Oracle-based data warehouse and it handles them fine.
What kind of queries do you execute on your table?
I would like to test the NoSQL world. This is just curiosity, not an absolute need (yet).
I have read a few things about the differences between SQL and NoSQL databases. I'm convinced about the potential advantages, but I'm a little worried about cases where NoSQL is not applicable. If I understand NoSQL databases essentially miss ACID properties.
Can someone give an example of some real world operation (for example an e-commerce site, or a scientific application, or...) that an ACID relational database can handle but where a NoSQL database could fail miserably, either systematically with some kind of race condition or because of a power outage, etc ?
The perfect example will be something where there can't be any workaround without modifying the database engine. Examples where a NoSQL database just performs poorly will eventually be another question, but here I would like to see when theoretically we just can't use such technology.
Maybe finding such an example is database specific. If this is the case, let's take MongoDB to represent the NoSQL world.
Edit:
to clarify this question I don't want a debate about which kind of database is better for certain cases. I want to know if this technology can be an absolute dead-end in some cases because no matter how hard we try some kind of features that a SQL database provide cannot be implemented on top of nosql stores.
Since there are many nosql stores available I can accept to pick an existing nosql store as a support but what interest me most is the minimum subset of features a store should provide to be able to implement higher level features (like can transactions be implemented with a store that don't provide X...).
This question is a bit like asking what kind of program cannot be written in an imperative/functional language. Any Turing-complete language and express every program that can be solved by a Turing Maching. The question is do you as a programmer really want to write a accounting system for a fortune 500 company in non-portable machine instructions.
In the end, NoSQL can do anything SQL based engines can, the difference is you as a programmer may be responsible for logic in something Like Redis that MySQL gives you for free. SQL databases take a very conservative view of data integrity. The NoSQL movement relaxes those standards to gain better scalability, and to make tasks that are common to Web Applications easier.
MongoDB (my current preference) makes replication and sharding (horizontal scaling) easy, inserts very fast and drops the requirement for a strict scheme. In exchange users of MongoDB must code around slower queries when an index is not present, implement transactional logic in the app (perhaps with three phase commits), and we take a hit on storage efficiency.
CouchDB has similar trade-offs but also sacrifices ad-hoc queries for the ability to work with data off-line then sync with a server.
Redis and other key value stores require the programmer to write much of the index and join logic that is built in to SQL databases. In exchange an application can leverage domain knowledge about its data to make indexes and joins more efficient then the general solution the SQL would require. Redis also require all data to fit in RAM but in exchange gives performance on par with Memcache.
In the end you really can do everything MySQL or Postgres do with nothing more then the OS file system commands (after all that is how the people that wrote these database engines did it). It all comes down to what you want the data store to do for you and what you are willing to give up in return.
Good question. First a clarification. While the field of relational stores is held together by a rather solid foundation of principles, with each vendor choosing to add value in features or pricing, the non-relational (nosql) field is far more heterogeneous.
There are document stores (MongoDB, CouchDB) which are great for content management and similar situations where you have a flat set of variable attributes that you want to build around a topic. Take site-customization. Using a document store to manage custom attributes that define the way a user wants to see his/her page is well suited to the platform. Despite their marketing hype, these stores don't tend to scale into terabytes that well. It can be done, but it's not ideal. MongoDB has a lot of features found in relational databases, such as dynamic indexes (up to 40 per collection/table). CouchDB is built to be absolutely recoverable in the event of failure.
There are key/value stores (Cassandra, HBase...) that are great for highly-distributed storage. Cassandra for low-latency, HBase for higher-latency. The trick with these is that you have to define your query needs before you start putting data in. They're not efficient for dynamic queries against any attribute. For instance, if you are building a customer event logging service, you'd want to set your key on the customer's unique attribute. From there, you could push various log structures into your store and retrieve all logs by customer key on demand. It would be far more expensive, however, to try to go through the logs looking for log events where the type was "failure" unless you decided to make that your secondary key. One other thing: The last time I looked at Cassandra, you couldn't run regexp inside the M/R query. Means that, if you wanted to look for patterns in a field, you'd have to pull all instances of that field and then run it through a regexp to find the tuples you wanted.
Graph databases are very different from the two above. Relations between items(objects, tuples, elements) are fluid. They don't scale into terabytes, but that's not what they are designed for. They are great for asking questions like "hey, how many of my users lik the color green? Of those, how many live in California?" With a relational database, you would have a static structure. With a graph database (I'm oversimplifying, of course), you have attributes and objects. You connect them as makes sense, without schema enforcement.
I wouldn't put anything critical into a non-relational store. Commerce, for instance, where you want guarantees that a transaction is complete before delivering the product. You want guaranteed integrity (or at least the best chance of guaranteed integrity). If a user loses his/her site-customization settings, no big deal. If you lose a commerce transation, big deal. There may be some who disagree.
I also wouldn't put complex structures into any of the above non-relational stores. They don't do joins well at-scale. And, that's okay because it's not the way they're supposed to work. Where you might put an identity for address_type into a customer_address table in a relational system, you would want to embed the address_type information in a customer tuple stored in a document or key/value. Data efficiency is not the domain of the document or key/value store. The point is distribution and pure speed. The sacrifice is footprint.
There are other subtypes of the family of stores labeled as "nosql" that I haven't covered here. There are a ton (122 at last count) different projects focused on non-relational solutions to data problems of various types. Riak is yet another one that I keep hearing about and can't wait to try out.
And here's the trick. The big-dollar relational vendors have been watching and chances are, they're all building or planning to build their own non-relational solutions to tie in with their products. Over the next couple years, if not sooner, we'll see the movement mature, large companies buy up the best of breed and relational vendors start offering integrated solutions, for those that haven't already.
It's an extremely exciting time to work in the field of data management. You should try a few of these out. You can download Couch or Mongo and have them up and running in minutes. HBase is a bit harder.
In any case, I hope I've informed without confusing, that I have enlightened without significant bias or error.
RDBMSes are good at joins, NoSQL engines usually aren't.
NoSQL engines is good at distributed scalability, RDBMSes usually aren't.
RDBMSes are good at data validation coinstraints, NoSQL engines usually aren't.
NoSQL engines are good at flexible and schema-less approaches, RDBMSes usually aren't.
Both approaches can solve either set of problems; the difference is in efficiency.
Probably answer to your question is that mongodb can handle any task (and sql too). But in some cases better to choose mongodb, in others sql database. About advantages and disadvantages you can read here.
Also as #Dmitry said mongodb open door for easy horizontal and vertical scaling with replication & sharding.
RDBMS enforce strong consistency while most no-sql are eventual consistent. So at a given point in time when data is read from a no-sql DB it might not represent the most up-to-date copy of that data.
A common example is a bank transaction, when a user withdraw money, node A is updated with this event, if at the same time node B is queried for this user's balance, it can return an outdated balance. This can't happen in RDBMS as the consistency attribute guarantees that data is updated before it can be read.
RDBMs are really good for quickly aggregating sums, averages, etc. from tables. e.g. SELECT SUM(x) FROM y WHERE z. It's something that is surprisingly hard to do in most NoSQL databases, if you want an answer at once. Some NoSQL stores provide map/reduce as a way of solving the same thing, but it is not real time in the same way it is in the SQL world.