Alsa tempo vs. PPQ - midi

Recently I've been playing with the haskell ALSA interface, and I had to notice, that I do not really understand the concepts of tempo and PPQ.
Earlier I've written a Swig-Python interface to ALSA and in there I find the following piece of code (probably copied from somewhere else):
1 void AlsaMidiIfc::setTempo (int bpm) {
2 int queue = this->getOutQueue();
3 snd_seq_queue_tempo_t *tempo;
4 snd_seq_queue_tempo_alloca (&tempo);
5 snd_seq_queue_tempo_set_tempo(tempo, 60 * 1000000 / bpm);
6 snd_seq_queue_tempo_set_ppq(tempo, PPQ);
7 snd_seq_set_queue_tempo (mySeq, queue, tempo);
8 }
When I put an event into a queue, the time is always specified in ticks, right? So the only timing question to answer is "how long is a tick?".
What is the point of specifying two values, i.e. tempo and PPQ?
What would be the effect of changing the tempo, but leaving PPQ as it
is?
If I don't set PPQ at all, but only the tempo, what would be the
result?

Standard MIDI Files use these two values (tempo and PPQ) to specify the tempo.
The ALSA sequencer just uses the same mechanism.
The tempo value is the number of microseconds per quarter note.
Increasing it will increase the length of a tick, i.e., make playback slower.
A PPQ value of zero would be invalid.

Related

How to find how long notes are in MIDI

I have one file that is 4/4 time, has 24 clocks per click, and 8 32nd notes per beat. I have no other information that could plausibly relate to the tempo. By experimentation, I think each tick (or whatever measurement delta time uses) is around one millisecond.
I have another file that is also 4/4 time, has 24 clocks per click, and 8 32nd notes per beat. It also has a tempo of 500000, which from what I can find is the default. By experimentation, each tick is about one 380th of a second.
Googling around was not helpful. I keep finding things that talk about stuff like pulses per quarter note. Which would be great if that was one of the numbers in the MIDI file. And they convert it to beats per minute, which isn't what I need. Though I do at least know what that means.
Is there an equation I can use to find how long a tick is using only numbers that are actually given in the MIDI file?
I'm using Mido to read the MIDI files, if that matters. Neither file has messages that fail to parse that would plausibly contain any missing information on tempo.

How to check analog values to see if they have varied more than 1V in the last 5 min?

I have an AB PLC where I am trying to read analog values to see if the values vary more than 1V in 5 minutes? I have 10 sets of values I need to read. What would the easiest way to implement this? I can think of creating arrays to save the values each time I read them but the part I am having trouble with is, how to keep a running average of the values and compare against each time I read them.
Any help with this would be greatly appreciated!!
If I understand correctly all you want to do is see if your analog input is more or less than 1V from your set value? Just check if your value is greater than (set value + 1V) or less than (set value - 1V) every plc scan then set a bool value to true. That should be it.
I think finding an average of the analog input is not the way to go for this. But if you did want to find an average of an analog input over time you would need 3 things. Sample time, interval time, and total intervals. You would set up a sample time of, lets say 12 seconds. You will get the analog value every 12 seconds. After 60 seconds you would take the total and divide by (60/12 == 5). You would then add that value to the previous value average value that you totaled up and divide by the total number of intervals times (total intervals) you have accumulated. Hope I didn't make that to complicated.
What i understood from you question is you want check whether input voltage changed or not using the analog value you got, in my case i'm using 0 to 10v. Just simple store the analog value at max input i mean at 10v and just do the same for 0v and you can simply calculate the value for 1v. All you have do is compare the value with +/- 1v value you got from the calculation. you can do this dynamically with n-number of analog inputs(n= max analog inputs supported by your PLC.)
Have a look at FFL and FFU. They are First-In-First-Out buffers. You specify the length of the buffer you want and use FFL and FFU in pairs on the same buffer. Running averages are not that difficult to compute, and there are a number of ways to best implement depending on the platform (SLC vs CLX). The simplest method that would work on both platforms is to use a counter.ACC as a value to indirectly reference the element number of the FIFO for an addition function, then divide by the number of elements in your FIFO. This can all be done in a single multi-branch rung.
1. Load your value into FIFO buffer at some timer interval using FFL.
2. If you don't need the FIFO values 'Popped out' for use elsewhere, just set .POS to 0 when the FIFO is full and let it continue to update with new values, the values aren't cleared so they are still readable for your Running Average. But you MUST either use FFU to step the .POS back or use a MOV function to change the .POS once it's full or it will stop taking values.
3. Create a counter with a .PRE equal to the .LEN of your FIFO
4. On a parallel Rung, with each increment of the counter.ACC use an ADD function. Here's an example assuming CLX. If you're using SLC you can do the same thing but obviously you can't use tag names:
ADD
Value1: AllValues
Value2: FIFO[IndexCounter.ACC]
Destination: AllValues
5. When your counter.DN bit is set, divide AllValues by FIFO.LEN and store in a RunningAverage Tag, then reset the counter. Have your counter step once for each scan or put it all in a Periodic Function to execute the routine.

Tempo and time signatures from MIDI

I'm currently building a software for displaying music notes from MIDI file. I can get every letter of tones from NoteOn and NoteOff events but I don`t know how I get or how calculate types of notes (whole, half, eigth..) and other time signatures.
How I can get it? I looked for some example but without success.
MIDI doesn't represent notes in absolute quantities, like in classical music. Instead, the length of the note continues until a corresponding note off event is parsed (also it's quite common that MIDI files use a note on event with 0 velocity as a note off, just keep this in mind). So basically you will need to translate the time in ticks between the two events to musical time to know whether use a whole, half, quarter note, etc.
This translation obviously depends on knowing the tempo and time signature, which are MIDI meta events. More information about parsing those can be found here:
http://www.sonicspot.com/guide/midifiles.html
Basically you take the PPQ to find the number of milliseconds per tick, then use the time signature and tempo to find the length of a quarter note in milliseconds. There are some answers on StackOverflow with this conversion, but I'm writing this post on my phone and can't be bothered to look them up right now. :-)
Hope this points you in the right direction!

AudioToolbox - Callback delay while recording

I've been working on a very specific project for iOS, lately, and my researches lead me to an almost final code. I've solved all the extreme difficulties I've found until now, but on this one I don't seem to have a clue (about the reason nor the possibility of solving it).
I set up my audioqueue (sample rate 44100, format LinearPCM, 16 bits per channel, 2 bytes per frame, 1 channel per frame...) and start recording the sound with 12 audio buffers. However, there seems to be a delay after every 4 callbacks.
The situation is the following: the first 4 callbacks are called with an interval each of about 2 ms. However, between the 4th and the 5th, there is a delay of about 60ms. The same thing happens between the 8th and the 9th, the 12th and 13th and on...
There seems to be a relation between the bytes per frame and the moment of the delay. I know this because if I change to 4 bytes per frame, I start having the delay between the 8th and the 9th, then between the 16th and the 17th, the 24th and the 25th... Nonetheless, there doesn't seem to be any relation between the moment of the delay and the number of buffers.
The callback function does only two things: store the audio data (inBuffer->mAudioData) on a array my class can use; and call another AudioQueueEnqueueBuffer, to put the current buffer back on the queue.
Did anyone go through this problem already? Does anyone know, at least, what could be the cause of it?
Thank you in advance.
The Audio Queue API seems to run on top of the RemoteIO Audio Unit API, who's real audio buffer size is probably unrelated to, and in your example larger than, whatever size your Audio Queue buffers are. So whenever a RemoteIO buffer is ready, a bunch of your smaller AQ buffers quickly get filled from it. And then you get a longer delay waiting for some larger buffer to be filled with samples.
If you want better controlled (more evenly spaced) buffer latency, try using the RemoteIo Audio Unit directly.

Why Does MIDI Offer 127 Notes

Is the 127 note values in MIDI musically significant (certain number of octaves or something)? or was it set at 127 due to the binary file format, IE for the purposes of computing?
In the MIDI protocol there are status bytes (think commands, such as note-on or note-off) and there are data bytes (think parameters, such as pitch value and velocity). The way to determine the difference between them is by the first bit. If that first bit is 1, then it is a status byte. If the first bit is 0, then it is a data byte. This leaves only 7 bits available for the rest of the status or data byte value.
So to answer your question in short, this has more to do with the protocol specification, but it just so happens to nicely line up to good number of available pitch values.
Now, these pitch values do not correspond to specific pitches. Yes it is true that typically a pitch value of 60 will give you C4, or middle C. Most synths work this way, but certainly not all. It isn't even a requirement that the synth uses the pitch value for pitches! MIDI doesn't care... it is just a protocol. You may be wondering how alternate tunings work... they work just fine. It is up to the synthesizer to produce the correct pitches for these alternate tunings. MIDI simply provides for a selection of 128 different values to be sent.
Also, if you are wondering why it is so important for that first bit to signify what the data is... There are system realtime messages that can be interjected in the middle of some other command. These are things like the timing clock which is often used to sync up LFOs among other things.
You can read more about the types of MIDI messages here: http://www.midi.org/techspecs/midimessages.php
127 = 27 - 1
It's the maximum positive value of an 8-bit signed integer, and so is a meaningful limit in file formats--it's the highest value you can store in a byte (on most systems) without making it unsigned.
I think what you are missing is that MIDI was created in the early 1980's, not to run on personal computers, but to run on musical instruments with extremely limited processing and storage capabilities. Storing 127 values seemed GIANT back then, especially when the largest keyboard typically has only 88 keys, and most electronic instruments only had 48. If you think MIDI is doing something in a strange way, it is likely that stems from its jurassic heritage.
Yes it is true that typically a pitch value of 60 will give you C4,
or middle C. Most synths work this way, but certainly not all.
Yes ... there has always been a disagreement about where middle C is in MIDI. On Yamaha keyboards it is C3, on Roland keyboards it is C4. Yamaha did it one way and Roland did it another.
Now, these pitch values do not correspond to specific pitches.
Not originally. However, in the "General MIDI" standard, A = 440, which is standard tuning. General MIDI also describes which patch is a piano, which is a guitar, and so on, so that MIDI files become portable across multitimbral sound sources.
Simple efficiency.
As a serial protocol MIDI was designed around simple serial chips of the time which would take 8 data bits in and transmit them as a stream out of one separate serial data pin at a proscribed rate. In the MIDI world this was 31,250 Hz. It added stop and start bits so all data could travel over one wire.
It was designed to be cheap and simple and the simplicity was extended into the data format.
The most significant bit of the 8 data bits was used to signal if the data byte was a command or data. So-
To send Middle C note ON on channel 1 at a velocity of 56 A command bytes is sent first
and the command for Note on was the upper 4 bits of that command bit 1001. Notice the 1 in the Most significant bit, this was followed by the channel ID for channel 1 0000 ( computers preferring to start counting from 0)
10010000 or 128 + 16 = 144
This was followed by the actual Note data
72 for Middle C or 01001000
and then the velocity data again specified in the range 0 -127 with a 0 MSB
56 in our case
00111000
So what would go down the wire (ignoring stop start & sync bits was)
144, 72, 56
For the almost brain dead microcomputers of the time in electronic keyboards the ability to separate command from data by simply looking at the first bit was a godsend.
As has been stated 127 bits covers pretty much any western keyboard you care to mention. So made perfectly logical sense and the protocols survival long after many serial protocols have disappeared into obscurity is a great compliment to http://en.wikipedia.org/wiki/Dave_Smith_(engineer) Dave Smith of Sequential Circuits who started the discussions with other manufacturers to set all this in place.
Modern music and composition would be considerably different without him and them.
Enjoy!
127 is enough to cover all piano keys
0 ~ 127 fits nicely for ADC conversions.
Many MIDI hardware devices rely on performing Analog to Digital conversions (ADC). Considering MIDI is a real time communication protocol, when performing an ADC conversion using successive-approximation (a commonly used algorithm), a good rule of thumb is to use 8 bit resolution for fast computation. This will yield values in the 0 ~ 1023 range, which can be converted to MIDI range by dividing by 8.