Suppose I have two matrices p
p =
1 3 6 7 3 6
8 5 10 10 10 4
5 4 8 9 1 7
5 5 5 3 8 9
9 3 5 4 3 1
3 3 9 10 4 1
then after sorting the columns of matrix p into ascending order
y =
1 3 5 3 1 1
3 3 5 4 3 1
5 3 6 7 3 4
5 4 8 9 4 6
8 5 9 10 8 7
9 5 10 10 10 9
I want to know, given a value from y, what its row was in p
ex: the value 3 which is in matrix p located in row 6 column 1
then after sorting it located in matrix y in row 2 column 1
So I want at the end the values after sorting in matrix y, where it was originally in matrix p
Just use second output of sort:
[y ind] = sort(p);
Your desired result (original row of each value) is in matrix ind.
The Matlab sort command returns a second value which can be used to index into the original array or matrix. From the sort documentation:
[Y,I] = sort(X,DIM,MODE) also returns an index matrix I.
If X is a vector, then Y = X(I).
If X is an m-by-n matrix and DIM=1, then
for j = 1:n, Y(:,j) = X(I(:,j),j); end
Ok i understand exactly what you want.
I will give you my code that i write now, it is not optimal but you can optimize it or i can work with you in order to get the better code..
P and y have the same size.
[n,m]=size(p);
for L=1:m
i=1;
temp=y(i,L);
while(i<=n)
if(temp==y(i,L))
% So it is present in case i of p
disp(['It is present in line' num2str(i) ' of p']);
end
i=i+1;
end
end
VoilĂ !!
Related
So i have this data:
A=
2
4
8
9
4
6
1
3
And 3 interval
B=
1 4
5 8
9 12
How to make an output like this
Output=
1
1
2
3
1
2
1
1
The output is based on the interval
you can solve it in several ways. for example, with arrayfun:
A = [2 4 8 9 4 6 1 3].';
B = [1 4;
5 8;
9 12];
res = arrayfun(#(x) find((x >= B(:,1)) & (x <= B(:,2))),A);
If the interval always has the same length, as in your case 4, you can solve it as follows:
Output=ceil(A/4);
If it is not the case, and if not all numbers necessarily fall between any of the intervals, you can compute it as follows. A zero is outputted if a number does not fall within any of the intervals.
% example entry
A=[2 3 4 8 9 4 6 1 3]';
B=[1 4;5 7;9 12]';
Arep=A(:,ones(size(B,2),1)); % replicate array (alternatively use repmat)
Alog=Arep>=B(1,:)&Arep<=B(2,:); % conditional statements, make logical array
Output=Alog*(1:size(B,2))'; % matrix product with natural array to obtain indices
I would like to align and count vectors with different time stamps to count the corresponding bins.
Let's assume I have 3 matrix from [N,edges] = histcounts in the following structure. The first row represents the edges, so the bins. The second row represents the values. I would like to sum all values with the same bin.
A = [0 1 2 3 4 5;
5 5 6 7 8 5]
B = [1 2 3 4 5 6;
2 5 7 8 5 4]
C = [2 3 4 5 6 7 8;
1 2 6 7 4 3 2]
Now I want to sum all the same bins. My final result should be:
result = [0 1 2 3 4 5 6 7 8;
5 7 12 16 ...]
I could loop over all numbers, but I would like to have it fast.
You can use accumarray:
H = [A B C].'; %//' Concatenate the histograms and make them column vectors
V = [unique(H(:,1)) accumarray(H(:,1)+1, H(:,2))].'; %//' Find unique values and accumulate
V =
0 1 2 3 4 5 6 7 8
5 7 12 16 22 17 8 3 2
Note: The H(:,1)+1 is to force the bin values to be positive, otherwise MATLAB will complain. We still use the actual bins in the output V. To avoid this, as #Daniel says in the comments, use the third output of unique (See: https://stackoverflow.com/a/27783568/2732801):
H = [A B C].'; %//' stupid syntax highlighting :/
[U, ~, IU] = unique(H(:,1));
V = [U accumarray(IU, H(:,2))].';
If you're only doing it with 3 variables as you've shown then there likely aren't going to be any performance hits with looping it.
But if you are really averse to the looping idea, then you can do it using arrayfun.
rng = 0:8;
output = arrayfun(#(x)sum([A(2,A(1,:) == x), B(2,B(1,:) == x), C(2,C(1,:) == x)]), rng);
output = cat(1, rng, output);
output =
0 1 2 3 4 5 6 7 8
5 7 12 16 22 17 8 3 2
This can be beneficial for particularly large A, B, and C variables as there is no copying of data.
I have a 4x8 matrix which I want to select two different columns of it then derive dot product of them and then divide to norm values of that selected columns, and then repeat this for all possible two different columns and save the vectors in a new matrix. can anyone provide me a matlab code for this purpose?
The code which I supposed to give me the output is:
A=[1 2 3 4 5 6 7 8;1 2 3 4 5 6 7 8;1 2 3 4 5 6 7 8;1 2 3 4 5 6 7 8;];
for i=1:8
for j=1:7
B(:,i)=(A(:,i).*A(:,j+1))/(norm(A(:,i))*norm(A(:,j+1)));
end
end
I would approach this a different way. First, create two matrices where the corresponding columns of each one correspond to a unique pair of columns from your matrix.
Easiest way I can think of is to create all possible combinations of pairs, and eliminate the duplicates. You can do this by creating a meshgrid of values where the outputs X and Y give you a pairing of each pair of vectors and only selecting out the lower triangular part of each matrix offsetting by 1 to get the main diagonal just one below the diagonal.... so do this:
num_columns = size(A,2);
[X,Y] = meshgrid(1:num_columns);
X = X(tril(ones(num_columns),-1)==1); Y = Y(tril(ones(num_columns),-1)==1);
In your case, here's what the grid of coordinates looks like:
>> [X,Y] = meshgrid(1:num_columns)
X =
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
Y =
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
As you can see, if we select out the lower triangular part of each matrix excluding the diagonal, you will get all combinations of pairs that are unique, which is what I did in the last parts of the code. Selecting the lower-part is important because by doing this, MATLAB selects out values column-wise, and traversing the columns of the lower-triangular part of each matrix gives you the exact orderings of each pair of columns in the right order (i.e. 1-2, 1-3, ..., 1-7, 2-3, 2-4, ..., etc.)
The point of all of this is that can then use X and Y to create two new matrices that contain the columns located at each pair of X and Y, then use dot to apply the dot product to each matrix column-wise. We also need to divide the dot product by the multiplication of the magnitudes of the two vectors respectively. You can't use MATLAB's built-in function norm for this because it will compute the matrix norm for matrices. As such, you have to sum over all of the rows for each column respectively for each of the two matrices then multiply both of the results element-wise then take the square root - this is the last step of the process:
matrix1 = A(:,X);
matrix2 = A(:,Y);
B = dot(matrix1, matrix2, 1) ./ sqrt(sum(matrix1.^2,1).*sum(matrix2.^2,1));
I get this for B:
>> B
B =
Columns 1 through 11
1 1 1 1 1 1 1 1 1 1 1
Columns 12 through 22
1 1 1 1 1 1 1 1 1 1 1
Columns 23 through 28
1 1 1 1 1 1
Well.. this isn't useful at all. Why is that? What you are actually doing is finding the cosine angle between two vectors, and since each vector is a scalar multiple of another, the angle that separates each vector is in fact 0, and the cosine of 0 is 1.
You should try this with different values of A so you can see for yourself that it works.
To make this code compatible for copying and pasting, here it is:
%// Define A here:
A = repmat(1:8, 4, 1);
%// Code to produce dot products here
num_columns = size(A,2);
[X,Y] = meshgrid(1:num_columns);
X = X(tril(ones(num_columns),-1)==1); Y = Y(tril(ones(num_columns),-1)==1);
matrix1 = A(:,X);
matrix2 = A(:,Y);
B = dot(matrix1, matrix2, 1) ./ sqrt(sum(matrix1.^2,1).*sum(matrix2.^2,1));
Minor Note
If you have a lot of columns in A, this may be very memory intensive. You can get your original code to work with loops, but you need to change what you're doing at each column.
You can do something like this:
num_columns = nchoosek(size(A,2),2);
B = zeros(1, num_columns);
counter = 1;
for ii = 1 : size(A,2)
for jj = ii+1 : size(A,2)
B(counter) = dot(A(:,ii), A(:,jj), 1) / (norm(A(:,ii))*norm(A(:,jj)));
counter = counter + 1;
end
end
Note that we can use norm because we're specifying vectors for each of the inputs into the function. We first preallocate a matrix B that will contain the dot products of all possible combinations. Then, we go through each pair of combinations - take note that the inner for loop starts from the outer most for loop index added with 1 so you don't look at any duplicates. We take the dot product of the corresponding columns referenced by positions ii and jj and store the results in B. I need an external counter so we can properly access the right slot to place our result in for each pair of columns.
so far i have done
Declare a random Matrix M of size 88 x 88
Type of M should be uint8 (all values should be between 0 to 255).
Spilt the Matrix into 4 parts: p1, p2, p3, p4
Transpose all parts
Concatenate all these four parts into new matrix N
Approach #1
If you have the Image Processing Toolbox, you can use blockproc for a pretty straight-forward solution to this -
fun = #(block_struct) transpose(block_struct.data);
N = blockproc(M, [size(M,1)/2 size(M,2)/2], fun)
Approach #2
Let's suppose you have an input matrix of size m x n and you would like to partition it into dim1p parts along the rows and dim2p parts along the columns, so that each block is of size m/dim1p x n/dim2p and you would like transpose them and finally concatenate them back to form a 2D array. This could be thought of as a general case of what you had proposed in the question.
To solve such a case with performance in mind, you can use this -
[m,n] = size(M); %// Get size
dim1p = 2; %// number of parts to be partitioned along dimension-1 (rows)
dim2p = 2; %// number of parts to be partitioned along dimension-2 (columns)
%// Split and transpose, resulting in a 3D array
A = reshape(permute(reshape(M, m, n/dim2p, []), [2 1 3]), n/dim2p, m/dim1p, []);
%// Join the 3D slices back into a 2D array for the desired output
nrows = n*dim1p/dim2p;
N = reshape(permute(reshape(permute(A,[1 3 2]),nrows,dim2p,[]),[1 3 2]),nrows,[])
Sample run (assuming M as 9 x 8 sized and partitioning it into 3 and 4 parts along the rows and columns respectively so that each block is of size 3 x 2) -
M =
5 6 2 6 4 2 1 3
2 8 8 1 3 8 3 7
5 1 6 8 4 1 6 8
6 5 7 3 3 6 7 1
4 3 9 3 2 2 5 3
4 9 5 7 6 2 2 1
7 6 2 5 9 3 5 6
8 9 5 6 9 6 7 1
1 1 3 3 4 9 1 3
dim1p =
3
dim2p =
4
N =
5 2 5 2 8 6 4 3 4 1 3 6
6 8 1 6 1 8 2 8 1 3 7 8
6 4 4 7 9 5 3 2 6 7 5 2
5 3 9 3 3 7 6 2 2 1 3 1
7 8 1 2 5 3 9 9 4 5 7 1
6 9 1 5 6 3 3 6 9 6 1 3
You are not much clear in the question, Maybe this helps,
M = uint8(randi([0 255],[88 88]));
p1 = M(1:end/2 ,1:end/2 );
p2 = M(1:end/2 ,end/2+1:end);
p3 = M(end/2+1:end,1:end/2 );
p4 = M(end/2+1:end,end/2+1:end);
N = [p1' p2';p3' p4'];
Another approach would be to use mat2cell to split up the matrix into a 2 x 2 grid of cells, transpose each of the cell's contents using cellfun, then piece them all together using cell2mat. Therefore:
[rows, cols] = size(M);
C = mat2cell(M, [rows/2, rows/2], [cols/2, cols/2]);
D = cellfun(#transpose, C, 'uni', 0);
out = cell2mat(D);
Minor note: This only works when the rows and columns are both even.
I have matrix a <500 x 500> and matrix b <500 x 2>.
Matrix b contains two types of values which are row and column coordinates for matrix a. I would like to use the values in matrix b to to copy all the values that fall on the row and column coordinates of matrix a.
see example below
matrix a matrix b output
1 2 3 4 5 1 5 1 2 3 4 5
6 7 8 9 10 2 5 7 8 9 10
11 12 13 14 15 1 3 11 12 13
Because every row will have a different length you'll need to save the values into a cell array.
Something like this should work:
output = cell( size(b,1),1);
for i = 1:size(a,1)
output{i} = a(i, b(i,1):b(i,2) )
end