dot product of matrix columns - matlab

I have a 4x8 matrix which I want to select two different columns of it then derive dot product of them and then divide to norm values of that selected columns, and then repeat this for all possible two different columns and save the vectors in a new matrix. can anyone provide me a matlab code for this purpose?
The code which I supposed to give me the output is:
A=[1 2 3 4 5 6 7 8;1 2 3 4 5 6 7 8;1 2 3 4 5 6 7 8;1 2 3 4 5 6 7 8;];
for i=1:8
for j=1:7
B(:,i)=(A(:,i).*A(:,j+1))/(norm(A(:,i))*norm(A(:,j+1)));
end
end

I would approach this a different way. First, create two matrices where the corresponding columns of each one correspond to a unique pair of columns from your matrix.
Easiest way I can think of is to create all possible combinations of pairs, and eliminate the duplicates. You can do this by creating a meshgrid of values where the outputs X and Y give you a pairing of each pair of vectors and only selecting out the lower triangular part of each matrix offsetting by 1 to get the main diagonal just one below the diagonal.... so do this:
num_columns = size(A,2);
[X,Y] = meshgrid(1:num_columns);
X = X(tril(ones(num_columns),-1)==1); Y = Y(tril(ones(num_columns),-1)==1);
In your case, here's what the grid of coordinates looks like:
>> [X,Y] = meshgrid(1:num_columns)
X =
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
Y =
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
As you can see, if we select out the lower triangular part of each matrix excluding the diagonal, you will get all combinations of pairs that are unique, which is what I did in the last parts of the code. Selecting the lower-part is important because by doing this, MATLAB selects out values column-wise, and traversing the columns of the lower-triangular part of each matrix gives you the exact orderings of each pair of columns in the right order (i.e. 1-2, 1-3, ..., 1-7, 2-3, 2-4, ..., etc.)
The point of all of this is that can then use X and Y to create two new matrices that contain the columns located at each pair of X and Y, then use dot to apply the dot product to each matrix column-wise. We also need to divide the dot product by the multiplication of the magnitudes of the two vectors respectively. You can't use MATLAB's built-in function norm for this because it will compute the matrix norm for matrices. As such, you have to sum over all of the rows for each column respectively for each of the two matrices then multiply both of the results element-wise then take the square root - this is the last step of the process:
matrix1 = A(:,X);
matrix2 = A(:,Y);
B = dot(matrix1, matrix2, 1) ./ sqrt(sum(matrix1.^2,1).*sum(matrix2.^2,1));
I get this for B:
>> B
B =
Columns 1 through 11
1 1 1 1 1 1 1 1 1 1 1
Columns 12 through 22
1 1 1 1 1 1 1 1 1 1 1
Columns 23 through 28
1 1 1 1 1 1
Well.. this isn't useful at all. Why is that? What you are actually doing is finding the cosine angle between two vectors, and since each vector is a scalar multiple of another, the angle that separates each vector is in fact 0, and the cosine of 0 is 1.
You should try this with different values of A so you can see for yourself that it works.
To make this code compatible for copying and pasting, here it is:
%// Define A here:
A = repmat(1:8, 4, 1);
%// Code to produce dot products here
num_columns = size(A,2);
[X,Y] = meshgrid(1:num_columns);
X = X(tril(ones(num_columns),-1)==1); Y = Y(tril(ones(num_columns),-1)==1);
matrix1 = A(:,X);
matrix2 = A(:,Y);
B = dot(matrix1, matrix2, 1) ./ sqrt(sum(matrix1.^2,1).*sum(matrix2.^2,1));
Minor Note
If you have a lot of columns in A, this may be very memory intensive. You can get your original code to work with loops, but you need to change what you're doing at each column.
You can do something like this:
num_columns = nchoosek(size(A,2),2);
B = zeros(1, num_columns);
counter = 1;
for ii = 1 : size(A,2)
for jj = ii+1 : size(A,2)
B(counter) = dot(A(:,ii), A(:,jj), 1) / (norm(A(:,ii))*norm(A(:,jj)));
counter = counter + 1;
end
end
Note that we can use norm because we're specifying vectors for each of the inputs into the function. We first preallocate a matrix B that will contain the dot products of all possible combinations. Then, we go through each pair of combinations - take note that the inner for loop starts from the outer most for loop index added with 1 so you don't look at any duplicates. We take the dot product of the corresponding columns referenced by positions ii and jj and store the results in B. I need an external counter so we can properly access the right slot to place our result in for each pair of columns.

Related

Reshape a matrix by splitting it after k columns in MATLAB

Suppose that I have a matrix , let's call it A, as follows:
1 2 3 4 5 1 2 3 4 5
0 2 4 6 8 1 3 5 7 9
And I want to reshape it into a matrix like this:
1 2 3 4 5
0 2 4 6 8
1 2 3 4 5
1 3 5 7 9
So, basically, what I want to be done is that MATLAB first reads a block of size (2,5) and then splits the remaining matrix to the next row and then repeats this so on so forth until we get something like in my example.
I tried to do this using MATLAB's reshape command in several ways but I failed. Any help is appreciated. In case that it matters, my original data is larger. It's (2,1080). Thanks.
I don't believe you can do this in a single command, but perhaps someone will correct me. If speed isn't a huge concern a for loop should work fine.
Alternatively you can get your results by reshaping each row of A and then placing the results into every other row of a new matrix. This will also work with your larger data.
A = [1 2 3 4 5 1 2 3 4 5
0 2 4 6 8 1 3 5 7 9];
An = zeros(numel(A)/5, 5); % Set up new, empty matrix
An(1:2:end,:) = reshape(A(1,:), 5, [])'; % Write the first row of A to every other row of An
An(2:2:end,:) = reshape(A(2,:), 5, [])' % Write second row of A to remaining rows
An =
1 2 3 4 5
0 2 4 6 8
1 2 3 4 5
1 3 5 7 9
You may need to read more about indexing in the Matlab's documentation.
For your example, it is easy to do the following
A=[1 2 3 4 5 1 2 3 4 5; 0 2 4 6 8 1 3 5 7 9]
a1=A(:,1:5); % extract all rows, and columns from 1 to 5
a2=A(:,6:end); % extract all rows, and columns from 6 to end
B=[a1;a2] % construct a new matrix.
It is not difficult to build some sort of loops to extract the rest.
Here's a way you can do it in one line using the reshape and permute commands:
B = reshape(permute(reshape(A,2,5,[]), [1,3,2]), [], 5);
The reshape(A,2,5,[]) command reshapes your A matrix into a three-dimensional tensor of dimension 2 x 5 x nblocks, where nblocks is the number of blocks in A in the horizontal direction. The permute command then swaps the 2nd and 3rd dimensions of this 3D tensor, so that it becomes a 2 x nblocks x 5 tensor. The final reshape command then transforms the 3D tensor into a matrix of dimension (2*nblocks) x 5.
Looking at the results at each stage may give you a better idea of what's happening.

How can I go through the columns of a matrix in matlab and add them each to a specific column of a sum matrix in matlab?

Supose there is a Matrix
A =
1 3 2 4
4 2 5 8
6 1 4 9
and I have a Vector containing the "class" of each column of this matrix for example
v = [1 , 1 , 2 , 3]
How can I sum the columns of the matrix to a new matrix as column vectors each to the column of their class? In this example columns 1 and 2 of A would added to the first column of the new matrix, column 2 to the 3 to the 2nd, column 4 the the 3rd.
Like
SUM =
4 2 4
6 5 8
7 4 9
Is this possible without loops?
One of the perfect scenarios to combine the powers of accumarray and bsxfun -
%// Since we are to accumulate columns, first step would be to transpose A
At = A.' %//'
%// Create a vector of linear IDs for use with ACCUMARRAY later on
idx = bsxfun(#plus,v(:),[0:size(A,1)-1]*max(v))
%// Use ACCUMARRAY to accumulate rows from At, i.e. columns from A based on the IDs
out = reshape(accumarray(idx(:),At(:)),[],size(A,1)).'
Sample run -
A =
1 3 2 4 6 0
4 2 5 8 9 2
6 1 4 9 8 9
v =
1 1 2 3 3 2
out =
4 2 10
6 7 17
7 13 17
An alternative with accumarray in 2D. Generate a grid with the vector v and then apply accumarray:
A = A.';
v = [1 1 2 3];
[X, Y] = ndgrid(v,1:size(A,2));
Here X and Y look like this:
X =
1 1 1
1 1 1
2 2 2
3 3 3
Y =
1 2 3
1 2 3
1 2 3
1 2 3
Then apply accumarray:
B=accumarray([X(:) Y(:)],A(:)),
SUM = B.'
SUM =
4 2 4
6 5 8
7 4 9
As you see, using [X(:) Y(:)] create the following array:
ans =
1 1
1 1
2 1
3 1
1 2
1 2
2 2
3 2
1 3
1 3
2 3
3 3
in which the vector v containing the "class" is replicated 3 times since there are 3 unique classes that are to be summed up together.
EDIT:
As pointed out by knedlsepp you can get rid of the transpose to A and B like so:
[X2, Y2] = ndgrid(1:size(A,1),v);
B = accumarray([X2(:) Y2(:)],A(:))
which ends up doing the same. I find it a bit more easier to visualize with the transposes but that gives the same result.
How about a one-liner?
result = full(sparse(repmat(v,size(A,1),1), repmat((1:size(A,1)).',1,size(A,2)), A));
Don't optimize prematurely!
The for loop performs fine for your problem:
out = zeros(size(A,1), max(v));
for i = 1:numel(v)
out(:,v(i)) = out(:,v(i)) + A(:,i);
end
BTW: With fine, I mean: fast, fast, fast!

How to change the value of the diagonal column of the matrix?

How do I change the list of value to all 1? I need the top right to bottom left also end up with 1.
rc = input('Please enter a value for rc: ');
mat = ones(rc,rc);
for i = 1:rc
for j = 1:rc
mat(i,j) = (i-1)+(j-1);
end
end
final = mat
final(diag(final)) = 1 % this won't work?
Code for the original problem -
final(1:size(final,1)+1:end)=1
Explanation: As an example consider a 5x5 final matrix, the diagonal elements would have indices as (1,1), (2,2) .. (5,5). Convert these to linear indices - 1, 7 and so on till the very last element, which is exactly what 1:size(final,1)+1:end gets us.
Edit : If you would like to set the diagonal(from top right to bottom left elements) as 1, one approach would be -
final(fliplr(eye(size(final)))==1)=1
Explanation: In this case as well we can use linear indexing, but just for more readability and maybe a little fun, we can use logical indexing with a proper mask, which is being created with fliplr(eye(size(final)))==1.
But, if you care about performance, you can use linear indexing here as well, like this -
final(sub2ind(size(final),1:size(final,1),size(final,2):-1:1))=1
Explanation: Here we are creating the linear indices with the rows and columns indices of the elements to be set. The rows here would be - 1:size(final,1) and columns are size(final,2):-1:1. We feed these two to sub2ind to get us the linear indices that we can use to index into final and set them to 1.
If you would to squeeze out the max performance here, go with this raw version of sub2ind -
final([size(final,2)-1:-1:0]*size(final,1) + [1:size(final,1)])=1
All of the approaches specified so far are great methods for doing what you're asking.
However, I'd like to provide another viewpoint and something that I've noticed in your code, as well as an interesting property of this matrix that may or may not have been noticed. All of the anti-diagonal values in your matrix have values equal to rc - 1.
As such, if you want to set all of the anti-diagonal values to 1, you can cheat and simply find those values equal to rc-1 and set these to 1. In other words:
final(final == rc-1) = 1;
Minor note on efficiency
As a means of efficiency, you can do the same thing your two for loops are doing when constructing mat by using the hankel command:
mat = hankel(0:rc-1,rc-1:2*(rc-1))
How hankel works in this case is that the first row of the matrix is specified by the vector of 0:rc-1. After, each row that follows incrementally shifts values to the left and adds an increasing value of 1 to the right. This keeps going until you encounter the vector seen in the second argument, and at this point we stop. In other words, if we did:
mat = hankel(0:3,3:6)
This is what we get:
mat =
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
Therefore, by specifying rc = 5, this is the matrix I get with hankel, which is identical to what your code produces (before setting the anti-diagonal to 1):
mat =
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
Tying it all together
With hankel and the cheat that I mentioned, we can compute what you are asking in three lines of code - with the first line of code asking for the dimensions of the matrix:
rc = input('Please enter a value for rc: ');
mat = hankel(0:rc-1, rc-1:2*(rc-1));
mat(mat == rc-1) = 1;
mat contains your final matrix. Therefore, with rc = 5, this is the matrix I get:
mat =
0 1 2 3 1
1 2 3 1 5
2 3 1 5 6
3 1 5 6 7
1 5 6 7 8
Here's a simple method where I just add/subtract the appropriate matrices to end up with the right thing:
final=mat-diag(diag(mat-1))+fliplr(diag([2-rc zeros(1,rc-2) 2-rc]))
Here is one way to do it:
Say we have a the square matrix:
a = ones(5, 5)*5
a =
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
5 5 5 5 5
You can remove the diagonal, then create a diagonal list of ones to replace it:
a = a - fliplr(diag(diag(fliplr(a)))) + fliplr(diag(ones(length(a), 1)))
a =
5 5 5 5 1
5 5 5 1 5
5 5 1 5 5
5 1 5 5 5
1 5 5 5 5
The diag(ones(length(a), 1)) can be any vector, ie. 1->5:
a = a - fliplr(diag(diag(fliplr(a)))) + fliplr(diag(1:length(a)))
a =
5 5 5 5 1
5 5 5 2 5
5 5 3 5 5
5 4 5 5 5
5 5 5 5 5

matching two matrices in matlab

Suppose I have two matrices p
p =
1 3 6 7 3 6
8 5 10 10 10 4
5 4 8 9 1 7
5 5 5 3 8 9
9 3 5 4 3 1
3 3 9 10 4 1
then after sorting the columns of matrix p into ascending order
y =
1 3 5 3 1 1
3 3 5 4 3 1
5 3 6 7 3 4
5 4 8 9 4 6
8 5 9 10 8 7
9 5 10 10 10 9
I want to know, given a value from y, what its row was in p
ex: the value 3 which is in matrix p located in row 6 column 1
then after sorting it located in matrix y in row 2 column 1
So I want at the end the values after sorting in matrix y, where it was originally in matrix p
Just use second output of sort:
[y ind] = sort(p);
Your desired result (original row of each value) is in matrix ind.
The Matlab sort command returns a second value which can be used to index into the original array or matrix. From the sort documentation:
[Y,I] = sort(X,DIM,MODE) also returns an index matrix I.
If X is a vector, then Y = X(I).
If X is an m-by-n matrix and DIM=1, then
for j = 1:n, Y(:,j) = X(I(:,j),j); end
Ok i understand exactly what you want.
I will give you my code that i write now, it is not optimal but you can optimize it or i can work with you in order to get the better code..
P and y have the same size.
[n,m]=size(p);
for L=1:m
i=1;
temp=y(i,L);
while(i<=n)
if(temp==y(i,L))
% So it is present in case i of p
disp(['It is present in line' num2str(i) ' of p']);
end
i=i+1;
end
end
VoilĂ !!

MATLAB find mean of column in matrix using two different indices

I have a 22007x3 matrix with data in column 3 and two separate indices in columns 1 and 2.
eg.
x =
1 3 4
1 3 5
1 3 5
1 16 4
1 16 3
1 16 4
2 4 1
2 4 3
2 11 2
2 11 3
2 11 2
I need to find the mean of the values in column 3 when the values in column 1 are the same AND the values in column 2 are the same, to end up with something like:
ans =
1 3 4.6667
1 16 3.6667
2 4 2
2 11 2.3333
Please bear in mind that in my data, the number of times the values in column 1 and 2 occur can be different.
Two options I've tried already are the meshgrid/accumarray option, using two distinct unique functions and a 3D array:
[U, ix, iu] = unique(x(:, 1));
[U2,ix2,iu2] = unique(x(:,2));
[c, r, j] = meshgrid((1:size(x(:, 1), 2)), iu, iu2);
totals = accumarray([r(:), c(:), j(:)], x(:), [], #nanmean);
which gives me this:
??? Maximum variable size allowed by the program is exceeded.
Error in ==> meshgrid at 60
xx = xx(ones(ny,1),:,ones(nz,1));
and the loop option,
for i=1:size(x,1)
if x(i,2)== x(i+1,2);
totals(i,:)=accumarray(x(:,1),x(:,3),[],#nanmean);
end
end
which is obviously so very, very wrong, not least because of the x(i+1,2) bit.
I'm also considering creating separate matrices depending on how many times a value in column 1 occurs, but that would be long and inefficient, so I'm loathe to go down that road.
Group on the first two columns with a unique(...,'rows'), then accumulate only the third column (always the best approach to accumulate only where accumulation really happens, thus avoiding indices, i.e. the first two columns, which you can reattach with unX):
[unX,~,subs] = unique(x(:,1:2),'rows');
out = [unX accumarray(subs,x(:,3),[],#nanmean)];
out =
1 3 4.6667
1 16 3.6667
2 4 2
2 11 2.33
This is an ideal opportunity to use sparse matrix math.
x = [ 1 2 5;
1 2 7;
2 4 6;
3 4 6;
1 4 8;
2 4 8;
1 1 10]; % for example
SM = sparse(x(:,1),x(:,2), x(:,3);
disp(SM)
Result:
(1,1) 10
(1,2) 12
(1,4) 8
(2,4) 14
(3,6) 7
As you can see, we did the "accumulate same indices into same container" in one fell swoop. Now you need to know how many elements you have:
NE = sparse(x(:,1), x(:,2), ones(size(x(:,1))));
disp(NE);
Result:
(1,1) 1
(1,2) 2
(1,4) 1
(2,4) 2
(3,6) 1
Finally, you divide one by the other to get the mean (only use elements that have a value):
matrixMean = SM;
nz = find(NE>0);
matrixMean(nz) = SM(nz) ./ NE(nz);
If you then disp(matrixMean), you get
(1,1) 10
(1,2) 6
(1,4) 8
(2,4) 7
(3,6) 7
If you want to access the individual elements differently, then after you have computed SM and NE you can do
[i j n] = find(NE);
matrixMean = SM(i,j)./NE(i,j);
disp([i(:) j(:) nonzeros(matrixMean)]);