How does Scala's Vector work? - scala

I read this page about the time complexity of Scala collections. As it says, Vector's complexity is eC for all operations.
It made me wonder what Vector is. I read the document and it says:
Because vectors strike a good balance between fast random selections and fast random functional updates, they are currently the
default implementation of immutable indexed sequences. It is backed by
a little endian bit-mapped vector trie with a branching factor of 32.
Locality is very good, but not contiguous, which is good for very
large sequences.
As with everything else about Scala, it's pretty vague. How actually does Vector work?

The keyword here is Trie.
Vector is implemented as a Trie datastructure.
See http://en.wikipedia.org/wiki/Trie.
More precisely, it is a "bit-mapped vector trie". I've just found a consise enough description of the structure (along with an implementation - apparently in Rust) here:
https://bitbucket.org/astrieanna/bitmapped-vector-trie
The most relevant excerpt is:
A Bitmapped Vector Trie is basically a 32-tree. Level 1 is an array of size 32, of whatever data type. Level 2 is an array of 32 Level 1's. and so on, until: Level 7 is an array of 2 Level 6's.
UPDATE: In reply to Lai Yu-Hsuan's comment about complexity:
I will have to assume you meant "depth" here :-D. The legend for "eC" says "The operation takes effectively constant time, but this might depend on some assumptions such as maximum length of a vector or distribution of hash keys.".
If you are willing to consider the worst case, and given that there is an upper bound to the maximum size of the vector, then yes indeed we can say that the complexity is constant.
Say that we consider the maximum size to be 2^32, then this means that the worst case is 7 operations at most, in any case.
Then again, we can always consider the worst case for any type of collection, find an upper bound and say this is constant complexity, but for a list by example, this would mean a constant of 4 billions, which is not quite practical.
But Vector is the opposite, 7 operations being more than practical, and this is how we can afford to consider its complexity constant in practice.
Another way to look at this: we are not talking about log(2,N), but log(32,N). If you try to plot that you'll see it is practically an horizontal line. So pragmatically speaking you'll never be able to see much increase in processing time as the collection grows.
Yes, that's still not really constant (which is why it is marked as "eC" and not just "C"), and you'll be able to see a difference around short vectors (but again, a very small difference because the number of operations grows so much slowly).

The other answers re 'Trie' are good. But as a close approximation, just for quick understanding:
Vector internally uses a tree structure - not a binary tree, but a 32-ary tree
Each '32-way node' uses Array[32] and can store either 0-32 references to child nodes or 0-32 pieces of data
The tree is structured to be balanced in a certain way - it is "n" levels deep, but levels 1 to n-1 are "index-only levels" (100% child references; no data) and level n contains all the data (100% data; no child references). So if the number of elements of data is "d" then n = log-base-32(d) rounded upwards
Why this? Simple: for performance.
Instead of doing thousands/millions/gazillions of memory allocations for each individual data element, memory is allocated in 32 element chunks. Instead of walking miles deep to find your data, the structure is quite shallow - it's a very wide, short tree. E.g. 5 levels deep can contain 32^5 data elements (for 4 byte elements = 132GB i.e. pretty big) and each data access would lookup & walk through 5 nodes from the root (whereas a big array would use a single data access). The vector does not proactively allocat memory for all of Level n (data), - it allocates in 32 element chunks as needed. It gives read performance somewhat similar to a huge array, whilst having functional characteristics (power & flexibility & memory-efficiency) somewhat similar to a binary tree.
:)

These may be interesting for you:
Ideal Hash Trees by Phil Bagwell.
Implementing Persistent Vectors in Scala - Daniel Spiewak
More Persistent Vectors: Performance Analysis - Daniel Spiewak
Persistent data structures in Scala

Related

Scala - TrieMap vs Vector

I read that TrieMap in scala is based on has array mapped trie, whike Vector reads bit mapped vector trie.
Are both darastructures backed by the same idea of a hash trie or is there a difference between these?
There are some similarities, but fundamentally they are different data structures:
Vector
There is no hashing involved in Vector. The index directly describes the path into the tree. And of course, the occupied indices of a vector are consecutive.
Disregarding all the trickery with the display pointers in the production implementation of scala.collection.immutable.Vector, every branch node in a vector except for the last one at a level has the same number of children (32 in case of the scala Vector). That allows indexing using simple bit manipulation. The downside is that splicing elements in the middle of a vector is expensive.
HashMap
In a HashTrieMap, the hash code is the path into the tree. That means that the occupied indices are not consecutive, but evenly distributed. This requires a different encoding of the tree branch nodes.
In a HashTrieMap, a branch node has up to 32 children (But if you have a very bad hash code distribution it is entirely possible to have a branch node with only one child). There is an Int bitmap to encode which child corresponds to which position, which means that looking up values in a HashTrieMap requires frequent calls to Integer.bitCount, which fortunately is a CPU intrinsic on modern CPUs.
Here is a fun project that allows you to look at the internals of scala data structures such as Vector and HashMap: https://github.com/stanch/reftree
The images in this answer were generated using this project.

Efficient Function to Map (or Hash) Integers and Integer Ranges into Index

We are looking for the computationally simplest function that will enable an indexed look-up of a function to be determined by a high frequency input stream of widely distributed integers and ranges of integers.
It is OK if the hash/map function selection itself varies based on the specific integer and range requirements, and the performance associated with the part of the code that selects this algorithm is not critical. The number of integers/ranges of interest in most cases will be small (zero to a few thousand). The performance critical portion is in processing the incoming stream and selecting the appropriate function.
As a simple example, please consider the following pseudo-code:
switch (highFrequencyIntegerStream)
case(2) : func1();
case(3) : func2();
case(8) : func3();
case(33-122) : func4();
...
case(10,000) : func40();
In a typical example, there would be only a few thousand of the "cases" shown above, which could include a full range of 32-bit integer values and ranges. (In the pseudo code above 33-122 represents all integers from 33 to 122.) There will be a large number of objects containing these "switch statements."
(Note that the actual implementation will not include switch statements. It will instead be a jump table (which is an array of function pointers) or maybe a combination of the Command and Observer patterns, etc. The implementation details are tangential to the request, but provided to help with visualization.)
Many of the objects will contain "switch statements" with only a few entries. The values of interest are subject to real time change, but performance associated with managing these changes is not critical. Hash/map algorithms can be re-generated slowly with each update based on the specific integers and ranges of interest (for a given object at a given time).
We have searched around the internet, looking at Bloom filters, various hash functions listed on Wikipedia's "hash function" page and elsewhere, quite a few Stack Overflow questions, abstract algebra (mostly Galois theory which is attractive for its computationally simple operands), various ciphers, etc., but have not found a solution that appears to be targeted to this problem. (We could not even find a hash or map function that considered these types of ranges as inputs, much less a highly efficient one. Perhaps we are not looking in the right places or using the correct vernacular.)
The current plan is to create a custom algorithm that preprocesses the list of interesting integers and ranges (for a given object at a given time) looking for shifts and masks that can be applied to input stream to help delineate the ranges. Note that most of the incoming integers will be uninteresting, and it is of critical importance to make a very quick decision for as large a percentage of that portion of the stream as possible (which is why Bloom filters looked interesting at first (before we starting thinking that their implementation required more computational complexity than other solutions)).
Because the first decision is so important, we are also considering having multiple tables, the first of which would be inverse masks (masks to select uninteresting numbers) for the easy to find large ranges of data not included in a given "switch statement", to be followed by subsequent tables that would expand the smaller ranges. We are thinking this will, for most cases of input streams, yield something quite a bit faster than a binary search on the bounds of the ranges.
Note that the input stream can be considered to be randomly distributed.
There is a pretty extensive theory of minimal perfect hash functions that I think will meet your requirement. The idea of a minimal perfect hash is that a set of distinct inputs is mapped to a dense set of integers in 1-1 fashion. In your case a set of N 32-bit integers and ranges would each be mapped to a unique integer in a range of size a small multiple of N. Gnu has a perfect hash function generator called gperf that is meant for strings but might possibly work on your data. I'd definitely give it a try. Just add a length byte so that integers are 5 byte strings and ranges are 9 bytes. There are some formal references on the Wikipedia page. A literature search in ACM and IEEE literature will certainly turn up more.
I just ran across this library I had not seen before.
Addition
I see now that you are trying to map all integers in the ranges to the same function value. As I said in the comment, this is not very compatible with hashing because hash functions deliberately try to "erase" the magnitude information in a bit's position so that values with similar magnitude are unlikely to map to the same hash value.
Consequently, I think that you will not do better than an optimal binary search tree, or equivalently a code generator that produces an optimal "tree" of "if else" statements.
If we wanted to construct a function of the type you are asking for, we could try using real numbers where individual domain values map to consecutive integers in the co-domain and ranges map to unit intervals in the co-domain. So a simple floor operation will give you the jump table indices you're looking for.
In the example you provided you'd have the following mapping:
2 -> 0.0
3 -> 1.0
8 -> 2.0
33 -> 3.0
122 -> 3.99999
...
10000 -> 42.0 (for example)
The trick is to find a monotonically increasing polynomial that interpolates these points. This is certainly possible, but with thousands of points I'm certain you'ed end up with something much slower to evaluate than the optimal search would be.
Perhaps our thoughts on hashing integers can help a little bit. You will also find there a hashing library (hashlib.zip) based on Bob Jenkins' work which deals with integer numbers in a smart way.
I would propose to deal with larger ranges after the single cases have been rejected by the hashing mechanism.

Sieve of Eratosthenes (reducing space complexity)

I wanted to generate prime numbers between two given numbers ‘a’ and ‘b’ (b > a). What I did was store Boolean values in an array of size b-1 (that is for numbers 2 to b) and then I applied the sieve method.
Is there a better way, that reduces space complexity, if I don't need all prime numbers from 2 to b?
You need to store all primes which are smaller of equal than the square root of b, then for each number between a and b check whether they are divisible by any of these numbers and they don't equal these numbers. So in our case the magic number is sqrt(b)
You can use segmented sieve of Eratosthenes. The basic idea is pretty simple.
In a typical sieve, we start with a large array of Booleans, all set to the same value. These represent odd numbers, starting from 3. We look at the first and see that it's true, so we add it to the list of prime numbers. Then we mark off every multiple of that number as not prime.
Now, the problem with this is that it's not very cache friendly. As we mark off the multiples of each number, we go through the entire array. Then when we reach the end, we start over from the beginning (which is no longer in the cache) and walk through the entire array again. Each time through the array, we read the entire array from main memory again.
For a segmented sieve, we do things a bit differently. We start by by finding only the primes up to the square root of the limit we care about. Then we use those to mark off primes in the main array. The difference here is the order in which we mark off primes. Instead of marking off all the multiples of three, then all the multiples of 5, and so on, we start by marking off the multiples of three for data that will fit in the cache. Then, instead of continuing on to more data in the array, we go back and mark off the multiples of five for the data that fits in the cache. Then the multiples of 7, and so on.
Then, when we've marked off all the multiples in that cache-sized chunk of data, we move on to the next cache-sized chunk of data. We start over with marking off multiples of 3 in this chunk, then multiples of 5, and so on until we've marked off all the multiples in this chunk. We continue that pattern until we've marked off all the non-prime numbers in all the chunks, and we're done.
So, given N primes below the square root of the limit we care about, a naive sieve will read the entire array of Booleans N times. By contrast, a segmented sieve will only read each chunk of the data once. Once a chunk of data is read from main memory, all the processing on that chunk is done before any more data is read from main memory.
The exact speed-up this gives will depend on the ratio of the speed of cache to the speed of main memory, the size of the array you're using vs. the size of the cache, and so on. Nonetheless, it is generally pretty substantial--for example, on my particular machine, looking for the primes up to 100 million, the segmented sieve has a speed advantage of about 10:1.
One thing you must remember, if you're using C++. A well-known issue with std::vector<bool> is Under C++98/03, vector<bool> was required to be a specialization that stored each Boolean as a single bit with some proxy trickery to get bool-like behavior. That requirement has since been lifted, but many libraries still include it.
With a non-segmented sieve, it's generally a useful trade-off. Although it requires a little extra CPU time to compute masks and such to modify only a single bit at a time, it saves enough bandwidth to main memory to more than compensate.
With a segmented sieve, bandwidth to main memory isn't nearly as large a factor, so using a vector<char> generally seems to give better results (at least with the compilers and processors I have handy).
Getting optimal performance from a segmented sieve does require knowledge of the size of your processor's cache, but getting it precisely correct isn't usually critical--if you assume the size is smaller than it really is, you won't necessarily get optimal use of your cache, but you usually won't lose a lot either.

Hash operator in Matlab for linear indices of vectors

I am clustering a large set of points. Throughout the iterations, I want to avoid re-computing cluster properties if the assigned points are the same as the previous iteration. Each cluster keeps the IDs of its points. I don't want to compare them element wise, comparing the sum of the ID vector is risky (a small ID can be compensated with a large one), may be I should compare the sum of squares? Is there a hashing method in Matlab which I can use with confidence?
Example data:
a=[2,13,14,18,19,21,23,24,25,27]
b=[6,79,82,85,89,111,113,123,127,129]
c=[3,9,59,91,99,101,110,119,120,682]
d=[11,57,74,83,86,90,92,102,103,104]
So the problem is that if I just check the sum, it could be that cluster d for example, looses points 11,103 and gets 9,105. Then I would mistakenly think that there has been no change in the cluster.
This is one of those (very common) situations where the more we know about your data and application the better we are able to help. In the absence of better information than you provide, and in the spirit of exposing the weakness of answers such as this in that absence, here are a couple of suggestions you might reject.
One appropriate data structure for set operations is a bit-set, that is a set of length equal to the cardinality of the underlying universe of things in which each bit is set on or off according to the things membership of the (sub-set). You could implement this in Matlab in at least two ways:
a) (easy, but possibly consuming too much space): define a matrix with as many columns as there are points in your data, and one row for each cluster. Set the (cluster, point) value to true if point is a member of cluster. Set operations are then defined by vector operations. I don't have a clue about the relative (time) efficiency of setdiff versus rowA==rowB.
b) (more difficult): actually represent the clusters by bit sets. You'll have to use Matlab's bit-twiddling capabilities of course, but the pain might be worth the gain. Suppose that your universe comprises 1024 points, then you'll need an array of 16 uint64 values to represent the bit set for each cluster. The presence of, say, point 563 in a cluster requires that you set, for the bit set representing that cluster, bit 563 (which is probably bit 51 in the 9th element of the set) to 1.
And perhaps I should have started by writing that I don't think that this is a hashing sort of a problem, it's a set sort of a problem. Yeah, you could use a hash but then you'll have to program around the limitations of using a screwdriver on a nail (choose your preferred analogy).
If I understand correctly, to hash the ID's I would recommend using the matlab Java interface to use the Java hashing algorithms
http://docs.oracle.com/javase/1.4.2/docs/api/java/security/MessageDigest.html
You'll do something like:
hash = java.security.MessageDigest.getInstance('SHA');
Hope this helps.
I found the function
DataHash on FEX it is quiet fast for vectors and the strcmp on the keys is a lot faster than I expected.

How is a bitmapped vector trie faster than a plain vector?

It's supposedly faster than a vector, but I don't really understand how locality of reference is supposed to help this (since a vector is by definition the most locally packed data possible -- every element is packed next to the succeeding element, with no extra space between).
Is the benchmark assuming a specific usage pattern or something similar?
How this is possible?
bitmapped vector tries aren't strictly faster than normal vectors, at least not at everything. It depends on what operation you are considering.
Conventional vectors are faster, for example, at accessing a data element at a specific index. It's hard to beat a straight indexed array lookup. And from a cache locality perspective, big arrays are pretty good if all you are doing is looping over them sequentially.
However a bitmapped vector trie will be much faster for other operations (thanks to structural sharing) - for example creating a new copy with a single changed element without affecting the original data structure is O(log32 n) vs. O(n) for a traditional vector. That's a huge win.
Here's an excellent video well worth watching on the topic, which includes a lot of the motivation of why you might want these kind of structures in your language: Persistent Data Structures and Managed References (talk by Rich Hickey).
There is a lot of good stuff in the other answers but nobdy answers your question. The PersistenVectors are only fast for lots of random lookups by index (when the array is big). "How can that be?" you might ask. "A normal flat array only needs to move a pointer, the PersistentVector has to go through multiple steps."
The answer is "Cache Locality".
The cache always gets a range from memory. If you have a big array it does not fit the cache. So if you want to get item x and item y you have to reload the whole cache. That's because the array is always sequential in memory.
Now with the PVector that's diffrent. There are lots of small arrays floating around and the JVM is smart about that and puts them close to each other in memory. So for random accesses this is fast; if you run through it sequentially it's much slower.
I have to say that I'm not an expert on hardware or how the JVM handles cache locality and I have never benchmarked this myself; I am just retelling stuff I've heard from other people :)
Edit: mikera mentions that too.
Edit 2: See this talk about Functional Data-Structures, skip to the last part if you are only intrested in the vector. http://www.infoq.com/presentations/Functional-Data-Structures-in-Scala
A bitmapped vector trie (aka a persistent vector) is a data structure invented by Rich Hickey for Clojure, that has been implementated in Scala since 2010 (v 2.8). It is its clever bitwise indexing strategy that allows for highly efficient access and modification of large data sets.
From Understanding Clojure's Persistent Vectors :
Mutable vectors and ArrayLists are generally just arrays which grows
and shrinks when needed. This works great when you want mutability,
but is a big problem when you want persistence. You get slow
modification operations because you'll have to copy the whole array
all the time, and it will use a lot of memory. It would be ideal to
somehow avoid redundancy as much as possible without losing
performance when looking up values, along with fast operations. That
is exactly what Clojure's persistent vector does, and it is done
through balanced, ordered trees.
The idea is to implement a structure which is similar to a binary
tree. The only difference is that the interior nodes in the tree have
a reference to at most two subnodes, and does not contain any elements
themselves. The leaf nodes contain at most two elements. The elements
are in order, which means that the first element is the first element
in the leftmost leaf, and the last element is the rightmost element in
the rightmost leaf. For now, we require that all leaf nodes are at the
same depth2. As an example, take a look at the tree below: It has
the integers 0 to 8 in it, where 0 is the first element and 8 the
last. The number 9 is the vector size:
If we wanted to add a new element to the end of this vector and we
were in the mutable world, we would insert 9 in the rightmost leaf
node, like this:
But here's the issue: We cannot do that if we want to be persistent.
And this would obviously not work if we wanted to update an element!
We would need to copy the whole structure, or at least parts of it.
To minimize copying while retaining full persistence, we perform path
copying: We copy all nodes on the path down to the value we're about
to update or insert, and replace the value with the new one when we're
at the bottom. A result of multiple insertions is shown below. Here,
the vector with 7 elements share structure with a vector with 10
elements:
The pink coloured nodes are shared between the vectors, whereas the
brown and blue are separate. Other vectors not visualized may also
share nodes with these vectors.
More info
Besides Understanding Clojure's Persistent Vectors, the ideas behind this data structure and its use cases are also explained pretty well in David Nolen's 2014 lecture Immutability, interactivity & JavaScript, from which the screenshot below was taken. Or if you really want to dive deeply into the technical details, see also Phil Bagwell's Ideal Hash Trees, which was the paper upon which Hickey's initial Clojure implementation was based.
What do you mean by "plain vector"? Just a flat array of items? That's great if you never update it, but if you ever change a 1M-element flat-vector you have to do a lot of copying; the tree exists to allow you to share most of the structure.
Short explanation: it uses the fact that the JVM optimizes so hard on read/write/copy array data structures. The key aspect IMO is that if your vector grows to a certain size index management becomes a  bottleneck . Here comes the very clever algorithm from persisted vector into play, on very large collections it outperforms the standard variant. So basically it is a functional data-structure which only performed so well because it is built up on small mutable highly optimizes JVM datastructures.
For further details see here (at the end)
http://topsy.com/vimeo.com/28760673
Judging by the title of the talk, it's talking about Scala vectors, which aren't even close to "the most locally packed data possible": see source at https://lampsvn.epfl.ch/trac/scala/browser/scala/tags/R_2_9_1_final/src/library/scala/collection/immutable/Vector.scala.
Your definition only applies to Lisps (as far as I know).