Custom Programming Language ~ How to interact with the Operating System - operating-system

I am trying to create my own programming language but I am already thinking ahead a little.
Of course when I can compile a little program I won't have a Standart Library at that time,
and you'd have to create one yourself. Now take for example I'd like to add some functionality to print a string to the screen, I am pretty sure I'd have to do a few System Calls to the operating system to get this displayed.
So to the point: What would be the best way to interact with the Operating System?
Possibilities I came up with myself:
- Generate Object Files and link those to the (for example) C Standart Library
- Writing the files with embedded assembly language containing System Calls
I have a feeling there are better possibilities!
I hope you can help me,
Christian
EDIT: It's a compiled language I am creating!

You have basically two options, like you say yourself. You can link your standard library with the standard C library, so that the I/O functions in your standard library can use C functions. Alternatively you can make system calls to the operating system directly.
The second approach seems like it's going to be more work: The system calls will be different on each operating system, so you'll have to put a lot of work into porting your system. The system calls may not be well documented, causing many frustrations.
You could start by linking your standard library to the C standard library and worry about other aspects of your language for the moment. Later you can look into replacing the C functions you use with syscalls.

Stdin and stdout are pretty much the minimum - if you are using a Unix environment you can then gain access to they keyboard, command line and also pipe text in and out to files.
If you are writing a new language - then StdError may also be worth considering too!

Related

Building a simple bridge between objc and lua?

I have integrated Lua with my ObjC code (iphone game). The setup was pretty easy, but now, I have a little problem with the bridging. I have googled for results, etc... and it seems there isn't anything that could work without modifications. I mean, I have checked luaobjc bridge (it seems pretty old and dicontinued), I heard about LuaCocoa but it seems not to work on iphone, and wax is too thick.
My needs are pretty spare, I just need to be able to call objc methods from lua and don't mind having to do extra work to make it work (I don't need a totally authomatic bridging system).
So, I have decided to build a little bridge myself based on this page http://anti-alias.me/?p=36. It has key information about how to accomplish what I need, but the tutorial is not completed and I have some doubts about how to deal with method overloading when called from lua, etc...
Do anybody know if there exist any working bridge between objc and lua on the iphone or if it could be so hard to complete the bridge the above site offers?
Any information will be welcomed.
Don't reinvent the wheel!
First, you are correct that luaobjc and some other variants are outdated. A good overview can be found on the LuaCocoa page. LuaCocoa is fine but apparently doesn't support iPhone development, so the only other choice is Wax. Both LuaCocoa and Wax are runtime bridges, which means that you can (in theory) access every Objective-C class and method in Lua at the expense of runtime performance.
For games and from my experience the runtime performance overhead is so significant that it doesn't warrant the use of any runtime binding library. From a perspective of why one would use a scripting language, both libraries defy the purpose of favoring a scripting language over a lower-level language: they don't provide a DSL solution - which means you're still going to write what is essentially Objective-C code but with a slightly different syntax, no runtime debugging support, and no code editing support in Xcode. In other words: runtime Lua binding is a questionable solution at best, and has lots of cons going against it. Runtime Lua bindings are particularly unsuited for fast-paced action games aiming at a constantly high framerate.
What you want is a static binding. Static bindings at a minimum require you to declare what kind of methods will be available in Lua code. Some binding libraries scan your header files, others require you to provide a special declaration file similar to a header file. Most binding libraries can use both approaches. The benefit is optimal runtime performance, and being able to actually design what classes, methods and variables Lua scripts have access to.
There are but 3 candidates to bind Lua code to an iPhone app. To be fair, there are a lot more but most have one or more crucial flaws or are simply not stable or for special purposes only, or simply don't work for iPhone apps. The candidates are:
tolua and tolua++
luabind
SWIG
Big disadvantage shared by all Lua static binding libraries: none of them can bind directly to Objective-C code. All require to have an additional C or C++ layer available that ultimately interfaces with your Objective-C code. This has to do with how Objective-C works as a language and how small a role it has played (so far) when it comes to embedding Lua in Objective-C apps.
I recently evaluated all three binding libraries and came to enjoy SWIG. It is very well documented but has a bit of a learning curve. But I believe that learning curve is warranted because SWIG can be used to combine nearly any programming and scripting language, it can be advantageous to know how to use SWIG for future projects. Plus, once you understand their definition file implementation it turns out to be very easy (especially when compared to luabind) and considerably more flexible than tolua.
OK, bit late to the party but in case others come late also to this post here's another approach to add to the choices available: hand-code your LUA APIs.
I did a lecture on this topic where I live coded some basic LUA bindings in an hour. Its not hard. From the lecture I made a set of video tutorials that shows how to get started.
The approach of using a bindings generation tool like SWIG is a good one if you already have exactly the APIs that you need to call written in Objective-C and it makes sense to bring all those same API's over into LUA.
The pros of the hand-coding approach:
your project just compiles with one standard Xcode target
your project is all C & Obj-C
the LUA is just data shipped along with your images
no fiddling with "do I check in generated code" to Git
you create LUA functions for just the things you want
you can easily have hosted scripts that live inside an object
the API is under your control and is well known
dont expose engine APIs to level building team/tools
The last point is just that if you have detail functions that only make sense at the engine level and you don't want to see those when coding the game play you'll need to tell SWIG not to bind those.
Steffens answer is perfect and this approach is just another option, that may suit some folks better depending on the project.

Communication between applications written in different languages

I am looking at linking a few applications together (all written in different languages like C#, C++, Python) and I am not sure how to go about it.
What I mean by linking? The system I am working on consists of small programs each responsible for a particular processing task. I need to be able to transfer a data set from one application to another easily (the data set in question is not huge, probably a few megabytes) and I also need some form of way to control the current state of the operation (This is where a client-server model rings a bell)
It seems like sockets or maybe SOAP would be a universal solution but just wanted to get some opinions as to what people think about this subject.
Comments/suggestions will be appreciated, thanks!
I personally take a liking towards ØMQ. It's a library that has a familiar BSD-sockets-like interface for passing messages, but you'll find it implements interesting patterns for distributing tasks.
It sounds like you want to arrange several processes in a pipeline. ØMQ allows you to do that using push and poll sockets. (And afterwards, you'll find it's even possible to scale up across multiple processes and machines with little effort.) Take a look at the guide to get started, and the zmq_socket(3) manpage specifically for how push and pull works.
Bindings are available for all the languages you mention.
As for the contents of the message, ØMQ doesn't concern itself with that, they are just blocks of raw data. You can use any format that suits you, such as JSON, or perhaps Protocol Buffers.
What I'm not sure about is the ‘controlling state’ you mention. Are you interested in, for example, cancelling a job halfway through?
For C# to C# you can use Windows Communication Foundation. You may be able to use it with Python and C++ as well.
You may also want to checkout named pipes.
I would think about moving to a model where you eliminate the issue by having centralized data that all of the applications look at. Keep "one source of the truth" so to speak.
Most outside software has trouble linking against C++ code, due to the name-mangling algorithm it uses for its symbols. For that reason, when interfacing with programs written in other languages, it is often best to declare wrappers to things as extern "C" or inside an extern "C" { block.
I need to be able to transfer a data set from one application to another easily (the data set in question is not huge, probably a few megabytes)
Use the file system.
and I also need some form of way to control the current state of the operation
Again, use the file system. A "current_state.json" file with a JSON serialized object is perfect for multiple languages to work with.
It seems like sockets or maybe SOAP would be a universal solution.
Perhaps. But it's overkill for this kind of thing. Your OS already has all the facilities you need. Just use the file system. It's very simple and very reliable.
There are many ways to do interprocess communication. As you said, sockets may be a universal solution. SOAP, i think, is somewhat an overkill. You may also use mailslots. I wrote C++ application using it a couple of years ago. Named pipes could be also a solution, but if you are coding on Windows, it may be difficult.
In my opinion:
Sockets
Mailslots
Are the best candidates.

What are the disadvantages of the Perl Tk module?

What are the disadvantages of the Tk module compared to other solutions to create a GUI in Perl?
I toured the various gui modules for Perl recently, and here is my summary (disclaimer: ultimately I found that none of the existing modules met my needs so I started writing my own gui toolkit).
Tk - Decent to work with and the interface is very perlish. The gui itself is a bit dated looking, and doesnt take advantage of any of the operating system's native widgets (like filepickers). On most systems it will require a C compiler to install.
Wx - Difficult to work with, un-perlish interface. Large programs almost require a gui builder to keep track of everything. Support for os level widgets is mixed. Nicer looking than Tk IMO. Compilation is involved, requires installing several libraries, can be difficult to get running on windows. The assembly of programs is very procedural, and does not map cleanly to what the program will actually look like.
Qt - last I looked this module was more or less abandoned and only supports Qt3. I didn't try to install it, but i imagine it needs a compiler.
Prima - Similar to Tk it has a dated appearance. Requires a compiler.
W32::GUI - I ruled this out early since it is not cross platform.
XUL::Node / POE::XUL::Node - rather heavy dependency tree that includes C code. Seems unmaintained and I had mixed experiences getting it to install. Windows was a no go, OSX was a no go, it had limited functionality on OpenSUSE. It also only supports a subset of the XUL language.
I found that none of the existing gui toolkits made it easy enough to distribute your application to end users. It is ok to expect programmers to jump through the hoops of resolving library dependencies and compiling code, but end users aren't going to do that. So the first requirement I had was to be pure Perl.
Secondly, nearly all of the existing gui toolkits force you to work in a very procedural manner: Create a container. Create a packer for the container. Create an object. Set properties on that object. Add the object to the packer. Run the packer to fill the container object. Repeat.
Instead, I find that nested design (like HTML) is easier to follow for two reasons. First off, since objects are nested, there is no need to name everything (label_456, label_457...). Secondly, the structure of the program mirrors the structure of what is displayed.
So I started work on XUL::Gui, and its been coming along rather well. It is pure Perl, and only depends on core modules for ease of installation. It has one external requirement, which is that a recent (3+) copy of Firefox is installed. It uses the familiar design pattern of web development with nested tags styled with CSS. It is certainly at a level where you could write fully featured single window applications with it.
Hopefully this helps you to figure out which toolkit is best for your project.
Tk has not been developed in a very long time. ActiveState now recommends development with their Tkx toolkit, which provides a thin layer over TclTk. It means that themed widgets are possible. But, TclTk is still quite primitive compared with many other GUI toolkits.
I haven't tried XUL:Gui but it seems the way to go.

How can I add internationalization to my Perl script?

I'm looking at introducing multi-lingual support to a mature CGI application written in Perl. I had originally considered rolling my own solution using a Perl hash (stored on disk) for translation files but then I came across a CPAN module which appears to do just what I want (i18n).
Does anyone have any experience with internationalization (specifically the i18n CPAN module) in Perl? Is the i18n module the preferred method for multi-lingual support or should I reconsider a custom solution?
Thanks
There is a Perl Journal article on software localisation. It will provide you with a good idea of what you can expect when adding multi-lingual support. It's beautifully written and humourous.
Specifically, the article is written by the folks who wrote and maintain Locale::Maketext, so I would recommend that module simply based upon the amount of pain it is clear the authors have had to endure to make it work correctly.
If you have the time then do take a look at the way the I18N is done in the Jifty framework - although initially quite confusing it is very elegant and usable.
They overload _ so that you can use _("text to translate") anywhere in the code. These strings are then translated using Locale::Maketext as normal.
What makes it really powerful is that they defer the translation until the string is needed using Scalar::Defer so that you can start adding the strings at any time, even before you know which language they will be translated into. For example in config files etc. This really make I18N easy to work with.

Suggestions for Adding Plugin Capability?

Is there a general procedure for programming extensibility capability into your code?
I am wondering what the general procedure is for adding extension-type capability to a system you are writing so that functionality can be extended through some kind of plugin API rather than having to modify the core code of a system.
Do such things tend to be dependent on the language the system was written in, or is there a general method for allowing for this?
I've used event-based APIs for plugins in the past. You can insert hooks for plugins by dispatching events and providing access to the application state.
For example, if you were writing a blogging application, you might want to raise an event just before a new post is saved to the database, and provide the post HTML to the plugin to alter as needed.
This is generally something that you'll have to expose yourself, so yes, it will be dependent on the language your system is written in (though often it's possible to write wrappers for other languages as well).
If, for example, you had a program written in C, for Windows, plugins would be written for your program as DLLs. At runtime, you would manually load these DLLs, and expose some interface to them. For example, the DLLs might expose a gimme_the_interface() function which could accept a structure filled with function pointers. These function pointers would allow the DLL to make calls, register callbacks, etc.
If you were in C++, you would use the DLL system, except you would probably pass an object pointer instead of a struct, and the object would implement an interface which provided functionality (accomplishing the same thing as the struct, but less ugly). For Java, you would load class files on-demand instead of DLLs, but the basic idea would be the same.
In all cases, you'll need to define a standard interface between your code and the plugins, so that you can initialize the plugins, and so the plugins can interact with you.
P.S. If you'd like to see a good example of a C++ plugin system, check out the foobar2000 SDK. I haven't used it in quite a while, but it used to be really well done. I assume it still is.
I'm tempted to point you to the Design Patterns book for this generic question :p
Seriously, I think the answer is no. You can't write extensible code by default, it will be both hard to write/extend and awfully inefficient (Mozilla started with the idea of being very extensible, used XPCOM everywhere, and now they realized it was a mistake and started to remove it where it doesn't make sense).
what makes sense to do is to identify the pieces of your system that can be meaningfully extended and support a proper API for these cases (e.g. language support plug-ins in an editor). You'd use the relevant patterns, but the specific implementation depends on your platform/language choice.
IMO, it also helps to use a dynamic language - makes it possible to tweak the core code at run time (when absolutely necessary). I appreciated that Mozilla's extensibility works that way when writing Firefox extensions.
I think there are two aspects to your question:
The design of the system to be extendable (the design patterns, inversion of control and other architectural aspects) (http://www.martinfowler.com/articles/injection.html). And, at least to me, yes these patterns/techniques are platform/language independent and can be seen as a "general procedure".
Now, their implementation is language and platform dependend (for example in C/C++ you have the dynamic library stuff, etc.)
Several 'frameworks' have been developed to give you a programming environment that provides you pluggability/extensibility but as some other people mention, don't get too crazy making everything pluggable.
In the Java world a good specification to look is OSGi (http://en.wikipedia.org/wiki/OSGi) with several implementations the best one IMHO being Equinox (http://www.eclipse.org/equinox/)
Find out what minimum requrements you want to put on a plugin writer. Then make one or more Interfaces that the writer must implement for your code to know when and where to execute the code.
Make an API the writer can use to access some of the functionality in your code.
You could also make a base class the writer must inherit. This will make wiring up the API easier. Then use some kind of reflection to scan a directory, and load the classes you find that matches your requirements.
Some people also make a scripting language for their system, or implements an interpreter for a subset of an existing language. This is also a possible route to go.
Bottom line is: When you get the code to load, only your imagination should be able to stop you.
Good luck.
If you are using a compiled language such as C or C++, it may be a good idea to look at plugin support via scripting languages. Both Python and Lua are excellent languages that are used to script a large number of applications (Civ4 and blender use Python, Supreme Commander uses Lua, etc).
If you are using C++, check out the boost python library. Otherwise, python ships with headers that can be used in C, and does a fairly good job documenting the C/python API. The documentation seemed less complete for Lua, but I may not have been looking hard enough. Either way, you can offer a fairly solid scripting platform without a terrible amount of work. It still isn't trivial, but it provides you with a very good base to work from.