Related
Is there a nice way I can convert a Scala case class instance, e.g.
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
into a mapping of some kind, e.g.
getCCParams(x) returns "param1" -> "hello", "param2" -> "world"
Which works for any case class, not just predefined ones. I've found you can pull the case class name out by writing a method that interrogates the underlying Product class, e.g.
def getCCName(caseobj: Product) = caseobj.productPrefix
getCCName(x) returns "MyClass"
So I'm looking for a similar solution but for the case class fields. I'd imagine a solution might have to use Java reflection, but I'd hate to write something that might break in a future release of Scala if the underlying implementation of case classes changes.
Currently I'm working on a Scala server and defining the protocol and all its messages and exceptions using case classes, as they are such a beautiful, concise construct for this. But I then need to translate them into a Java map to send over the messaging layer for any client implementation to use. My current implementation just defines a translation for each case class separately, but it would be nice to find a generalised solution.
This should work:
def getCCParams(cc: AnyRef) =
cc.getClass.getDeclaredFields.foldLeft(Map.empty[String, Any]) { (a, f) =>
f.setAccessible(true)
a + (f.getName -> f.get(cc))
}
Because case classes extend Product one can simply use .productIterator to get field values:
def getCCParams(cc: Product) = cc.getClass.getDeclaredFields.map( _.getName ) // all field names
.zip( cc.productIterator.to ).toMap // zipped with all values
Or alternatively:
def getCCParams(cc: Product) = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map( _.getName -> values.next ).toMap
}
One advantage of Product is that you don't need to call setAccessible on the field to read its value. Another is that productIterator doesn't use reflection.
Note that this example works with simple case classes that don't extend other classes and don't declare fields outside the constructor.
Starting Scala 2.13, case classes (as implementations of Product) are provided with a productElementNames method which returns an iterator over their field's names.
By zipping field names with field values obtained with productIterator we can generically obtain the associated Map:
// case class MyClass(param1: String, param2: String)
// val x = MyClass("hello", "world")
(x.productElementNames zip x.productIterator).toMap
// Map[String,Any] = Map("param1" -> "hello", "param2" -> "world")
If anybody looks for a recursive version, here is the modification of #Andrejs's solution:
def getCCParams(cc: Product): Map[String, Any] = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map {
_.getName -> (values.next() match {
case p: Product if p.productArity > 0 => getCCParams(p)
case x => x
})
}.toMap
}
It also expands the nested case-classes into maps at any level of nesting.
Here's a simple variation if you don't care about making it a generic function:
case class Person(name:String, age:Int)
def personToMap(person: Person): Map[String, Any] = {
val fieldNames = person.getClass.getDeclaredFields.map(_.getName)
val vals = Person.unapply(person).get.productIterator.toSeq
fieldNames.zip(vals).toMap
}
scala> println(personToMap(Person("Tom", 50)))
res02: scala.collection.immutable.Map[String,Any] = Map(name -> Tom, age -> 50)
If you happen to be using Json4s, you could do the following:
import org.json4s.{Extraction, _}
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
Extraction.decompose(x)(DefaultFormats).values.asInstanceOf[Map[String,String]]
Solution with ProductCompletion from interpreter package:
import tools.nsc.interpreter.ProductCompletion
def getCCParams(cc: Product) = {
val pc = new ProductCompletion(cc)
pc.caseNames.zip(pc.caseFields).toMap
}
You could use shapeless.
Let
case class X(a: Boolean, b: String,c:Int)
case class Y(a: String, b: String)
Define a LabelledGeneric representation
import shapeless._
import shapeless.ops.product._
import shapeless.syntax.std.product._
object X {
implicit val lgenX = LabelledGeneric[X]
}
object Y {
implicit val lgenY = LabelledGeneric[Y]
}
Define two typeclasses to provide the toMap methods
object ToMapImplicits {
implicit class ToMapOps[A <: Product](val a: A)
extends AnyVal {
def mkMapAny(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, Any] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v }
}
implicit class ToMapOps2[A <: Product](val a: A)
extends AnyVal {
def mkMapString(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, String] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v.toString }
}
}
Then you can use it like this.
object Run extends App {
import ToMapImplicits._
val x: X = X(true, "bike",26)
val y: Y = Y("first", "second")
val anyMapX: Map[String, Any] = x.mkMapAny
val anyMapY: Map[String, Any] = y.mkMapAny
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
val stringMapX: Map[String, String] = x.mkMapString
val stringMapY: Map[String, String] = y.mkMapString
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
}
which prints
anyMapX = Map(c -> 26, b -> bike, a -> true)
anyMapY = Map(b -> second, a -> first)
stringMapX = Map(c -> 26, b -> bike, a -> true)
stringMapY = Map(b -> second, a -> first)
For nested case classes, (thus nested maps)
check another answer
I don't know about nice... but this seems to work, at least for this very very basic example. It probably needs some work but might be enough to get you started? Basically it filters out all "known" methods from a case class (or any other class :/ )
object CaseMappingTest {
case class MyCase(a: String, b: Int)
def caseClassToMap(obj: AnyRef) = {
val c = obj.getClass
val predefined = List("$tag", "productArity", "productPrefix", "hashCode",
"toString")
val casemethods = c.getMethods.toList.filter{
n =>
(n.getParameterTypes.size == 0) &&
(n.getDeclaringClass == c) &&
(! predefined.exists(_ == n.getName))
}
val values = casemethods.map(_.invoke(obj, null))
casemethods.map(_.getName).zip(values).foldLeft(Map[String, Any]())(_+_)
}
def main(args: Array[String]) {
println(caseClassToMap(MyCase("foo", 1)))
// prints: Map(a -> foo, b -> 1)
}
}
commons.mapper.Mappers.Mappers.beanToMap(caseClassBean)
Details: https://github.com/hank-whu/common4s
With the use of Java reflection, but no change of access level. Converts Product and case class to Map[String, String]:
def productToMap[T <: Product](obj: T, prefix: String): Map[String, String] = {
val clazz = obj.getClass
val fields = clazz.getDeclaredFields.map(_.getName).toSet
val methods = clazz.getDeclaredMethods.filter(method => fields.contains(method.getName))
methods.foldLeft(Map[String, String]()) { case (acc, method) =>
val value = method.invoke(obj).toString
val key = if (prefix.isEmpty) method.getName else s"${prefix}_${method.getName}"
acc + (key -> value)
}
}
Modern variation with Scala 3 might also be a bit simplified as with the following example that is similar to the answer posted by Walter Chang above.
def getCCParams(cc: AnyRef): Map[String, Any] =
cc.getClass.getDeclaredFields
.tapEach(_.setAccessible(true))
.foldLeft(Map.empty)((a, f) => a + (f.getName -> f.get(cc)))
I have code where a class can provide modified copies of itself, like so:
case class A(i: Int, s: String) {
def foo(ii: Int): A = copy(i = ii)
def bar(ss: String): A = copy(s = ss)
}
I want to create a function that takes some optional arguments and creates these modified copies using these arguments if they are defined:
def subA(a: A, oi: Option[Int] = None, os: Option[String] = None): A = {
if (oi.isDefined && os.isDefined)
a.foo(oi.get).bar(os.get)
else if (oi.isDefined && !os.isDefined)
a.foo(oi.get)
else if (!oi.isDefined && os.isDefined)
a.bar(os.get)
else
a
}
This is clearly not sustainable, as I add new optional arguments, I have to create cases for every combination of arguments...
I also cannot do:
a.foo(oi.getOrElse(a.i)).bar(os.getOrElse(a.s))
Because in my actual code, if oi or os is not provided, I should NOT run their associated foo and bar functions. In other words, I have no default arguments for oi and os, rather their existence defines whether I should run certain functions at all.
Current solution, extend the class:
implicit class A_extended(a: A) {
def fooOption(oi: Option[Int]): A = if (oi.isDefined) a.foo(oi.get) else a
def barOption(os: Option[String]): A = if (os.isDefined) a.bar(os.get) else a
}
def subA(a: A, oi: Option[Int] = None, os: Option[String] = None): A = {
a.fooOption(oi).barOption(os)
}
But this problem comes up often and it's a bit tedious to do this constantly, is there something like:
// oi: Option[Int], foo: Int => A
oi.ifDefinedThen(a.foo(_), a) // returns a.foo(oi.get) if oi is not None, else just a
Or should I just extend Option to provide this functionality?
Use fold on option final def fold[B](ifEmpty: => B)(f: A => B): B
def subA(a: A, oi: Option[Int] = None, os: Option[String] = None): A = {
val oia = oi.fold(a)(a.foo)
os.fold(oia)(oia.bar)
}
Scala REPL
scala> def subA(a: A, oi: Option[Int] = None, os: Option[String] = None): A = {
val oia = oi.fold(a)(a.foo)
os.fold(oia)(oia.bar)
}
defined function subA
scala> subA(A(1, "bow"), Some(2), Some("cow"))
res10: A = A(2, "cow")
or
Use pattern matching to deal with options elegantly. Create a tuple of options and then use pattern matching to extract the inner values
val a = Some(1)
val b = Some("some string")
(a, b) match {
case (Some(x), Some(y)) =>
case (Some(x), _) =>
case (_, Some(y)) =>
case (_, _) =>
}
Well... You can use reflection to create arbitrary copiers and even updaters for your case classes.
The difference is that an updater updates the case class instance and the copier create a new copy with updated fields.
An implementation of an updater can be done as below,
import scala.language.existentials
import scala.reflect.runtime.{universe => ru}
def copyInstance[C: scala.reflect.ClassTag](instance: C, mapOfUpdates: Map[String, T forSome {type T}]): C = {
val runtimeMirror = ru.runtimeMirror(instance.getClass.getClassLoader)
val instanceMirror = runtimeMirror.reflect(instance)
val tpe = instanceMirror.symbol.toType
val copyMethod = tpe.decl(ru.TermName("copy")).asMethod
val copyMethodInstance = instanceMirror.reflectMethod(copyMethod)
val updates = tpe.members
.filter(member => member.asTerm.isCaseAccessor && member.asTerm.isMethod)
.map(member => {
val term = member.asTerm
//check if we need to update it or use the instance value
val updatedValue = mapOfUpdates.getOrElse(
key = term.name.toString,
default = instanceMirror.reflectField(term).get
)
updatedValue
}).toSeq.reverse
val copyOfInstance = copyMethodInstance(updates: _*).asInstanceOf[C]
copyOfInstance
}
def updateInstance[C: scala.reflect.ClassTag](instance: C, mapOfUpdates: Map[String, T forSome {type T}]): C = {
val runtimeMirror = ru.runtimeMirror(instance.getClass.getClassLoader)
val instanceMirror = runtimeMirror.reflect(instance)
val tpe = instanceMirror.symbol.toType
tpe.members.foreach(member => {
val term = member.asTerm
term.isCaseAccessor && term.isMethod match {
case true =>
// it is a case class accessor, check if we need to update it
mapOfUpdates.get(term.name.toString).foreach(updatedValue => {
val fieldMirror = instanceMirror.reflectField(term.accessed.asTerm)
// filed mirrors can even update immutable fields !!
fieldMirror.set(updatedValue)
})
case false => // Not a case class accessor, do nothing
}
})
instance
}
And since you wanted to use Options to copy, here is your define once and use with all case classes copyUsingOptions
def copyUsingOptions[C: scala.reflect.ClassTag](instance: C, listOfUpdateOptions: List[Option[T forSome {type T}]]): C = {
val runtimeMirror = ru.runtimeMirror(instance.getClass.getClassLoader)
val instanceMirror = runtimeMirror.reflect(instance)
val tpe = instanceMirror.symbol.toType
val copyMethod = tpe.decl(ru.TermName("copy")).asMethod
val copyMethodInstance = instanceMirror.reflectMethod(copyMethod)
val updates = tpe.members.toSeq
.filter(member => member.asTerm.isCaseAccessor && member.asTerm.isMethod)
.reverse
.zipWithIndex
.map({ case (member, index) =>
listOfUpdateOptions(index).getOrElse(instanceMirror.reflectField(member.asTerm).get)
})
val copyOfInstance = copyMethodInstance(updates: _*).asInstanceOf[C]
copyOfInstance
}
Now you can use these updateInstance or copyInstance to update or copy instances of any case classes,
case class Demo(id: Int, name: String, alliance: Option[String], power: Double, lat: Double, long: Double)
// defined class Demo
val d1 = Demo(1, "player_1", None, 15.5, 78.404, 71.404)
// d1: Demo = Demo(1,player_1,None,15.5,78.404,71.404)
val d1WithAlliance = copyInstance(d1, Map("alliance" -> Some("Empires")))
// d1WithAlliance: Demo = Demo(1,player_1,Some(Empires),15.5,78.404,71.404)
val d2 = copyInstance(d1, Map("id" -> 2, "name" -> "player_2"))
d2: Demo = Demo(2,player_2,None,15.5,78.404,71.404)
val d3 = copyWithOptions(
d1, List(Some(3),
Some("player_3"), Some(Some("Vikings")), None, None, None)
)
// d3: Demo = Demo(3,player_3,Some(Vikings),15.5,78.404,71.404)
// Or you can update instance using updateInstance
val d4 = updateInstance(d1, Map("id" -> 4, "name" -> "player_4"))
// d4: Demo = Demo(4,player_4,None,15.5,78.404,71.404)
d1
// d1: Demo = Demo(4,player_4,None,15.5,78.404,71.404)
Another option (no pun intended, heh) would be to have foo and bar themselves take and fold over Options:
case class A(i: Int, s: String) {
def foo(optI: Option[Int]): A =
optI.fold(this)(ii => copy(i = ii))
def bar(optS: Option[String]): A =
optS.fold(this)(ss => copy(s = ss))
}
Then, subA can be minimal:
object A {
def subA(
a: A,
optI: Option[Int] = None,
optS: Option[String] = None): A =
a foo optI bar optS
}
You can also overload foo and bar to take plain Int and String as well if you have to maintain the API; in that case make the Option-taking methods call out to their corresponding non-Option-taking ones.
I have a generic map with values, some of which can be in turn lists of values.
I'm trying to process a given key and convert the results to the type expected by an outside caller, like this:
// A map with some values being other collections.
val map: Map[String, Any] = Map("foo" -> 1, "bar" -> Seq('a', 'b'. 'a'))
// A generic method with a "specialization" for collections (pseudocode)
def cast[T](key: String) = map.get(key).map(_.asInstanceOf[T])
def cast[C <: Iterable[T]](key: String) = map.get(key).map(list => list.to[C].map(_.asIntanceOf[T]))
// Expected usage
cast[Int]("foo") // Should return 1:Int
cast[Set[Char]]("bar") // Should return Set[Char]('a', 'b')
This is to show what I would like to do, but it does not work. The compiler error complains (correctly, about 2 possible matches). I've also tried to make this a single function with some sort of pattern match on the type to no avail.
I've been reading on #specialized, TypeTag, CanBuildFrom and other scala functionality, but I failed to find a simple way to put it all together. Separate examples I've found address different pieces and some ugly workarounds, but nothing that would simply allow an external user to call cast and get an exception is the cast was invalid. Some stuff is also old, I'm using Scala 2.10.5.
This appears to work but it has a some problems.
def cast[T](m: Map[String, Any], k: String):T = m(k) match {
case x: T => x
}
With the right input you get the correct output.
scala> cast[Int](map,"foo")
res18: Int = 1
scala> cast[Set[Char]](map,"bar")
res19: Set[Char] = Set(a, b)
But it throws if the type is wrong for the key or if the map has no such key (of course).
You can do this via implicit parameters:
val map: Map[String, Any] = Map("foo" -> 1, "bar" -> Set('a', 'b'))
abstract class Casts[B] {def cast(a: Any): B}
implicit val doubleCast = new Casts[Double] {
override def cast(a: Any): Double = a match {
case x: Int => x.toDouble
}
}
implicit val intCast = new Casts[Int] {
override def cast(a: Any): Int = a match {
case x: Int => x
case x: Double => x.toInt
}
}
implicit val seqCharCast = new Casts[Seq[Char]] {
override def cast(a: Any): Seq[Char] = a match {
case x: Set[Char] => x.toSeq
case x: Seq[Char] => x
}
}
def cast[T](key: String)(implicit p:Casts[T]) = p.cast(map(key))
println(cast[Double]("foo")) // <- 1.0
println(cast[Int]("foo")) // <- 1
println(cast[Seq[Char]]("bar")) // <- ArrayBuffer(a, b) which is Seq(a, b)
But you still need to iterate over all type-to-type options, which is reasonable as Set('a', 'b').asInstanceOf[Seq[Char]] throws, and you cannot use a universal cast, so you need to handle such cases differently.
Still it sounds like an overkill, and you may need to review your approach from global perspective
I need a Map where I put different types of values (Double, String, Int,...) in it, key can be String.
Is there a way to do this, so that I get the correct type with map.apply(k) like
val map: Map[String, SomeType] = Map()
val d: Double = map.apply("double")
val str: String = map.apply("string")
I already tried it with a generic type
class Container[T](element: T) {
def get: T = element
}
val d: Container[Double] = new Container(4.0)
val str: Container[String] = new Container("string")
val m: Map[String, Container] = Map("double" -> d, "string" -> str)
but it's not possible since Container takes an parameter. Is there any solution to this?
This is not straightforward.
The type of the value depends on the key. So the key has to carry the information about what type its value is. This is a common pattern. It is used for example in SBT (see for example SettingsKey[T]) and Shapeless Records (Example). However, in SBT the keys are a huge, complex class hierarchy of its own, and the HList in shapeless is pretty complex and also does more than you want.
So here is a small example of how you could implement this. The key knows the type, and the only way to create a Record or to get a value out of a Record is the key. We use a Map[Key, Any] internally as storage, but the casts are hidden and guaranteed to succeed. There is an operator to create records from keys, and an operator to merge records. I chose the operators so you can concatenate Records without having to use brackets.
sealed trait Record {
def apply[T](key:Key[T]) : T
def get[T](key:Key[T]) : Option[T]
def ++ (that:Record) : Record
}
private class RecordImpl(private val inner:Map[Key[_], Any]) extends Record {
def apply[T](key:Key[T]) : T = inner.apply(key).asInstanceOf[T]
def get[T](key:Key[T]) : Option[T] = inner.get(key).asInstanceOf[Option[T]]
def ++ (that:Record) = that match {
case that:RecordImpl => new RecordImpl(this.inner ++ that.inner)
}
}
final class Key[T] {
def ~>(value:T) : Record = new RecordImpl(Map(this -> value))
}
object Key {
def apply[T] = new Key[T]
}
Here is how you would use this. First define some keys:
val a = Key[Int]
val b = Key[String]
val c = Key[Float]
Then use them to create a record
val record = a ~> 1 ++ b ~> "abc" ++ c ~> 1.0f
When accessing the record using the keys, you will get a value of the right type back
scala> record(a)
res0: Int = 1
scala> record(b)
res1: String = abc
scala> record(c)
res2: Float = 1.0
I find this sort of data structure very useful. Sometimes you need more flexibility than a case class provides, but you don't want to resort to something completely type-unsafe like a Map[String,Any]. This is a good middle ground.
Edit: another option would be to have a map that uses a (name, type) pair as the real key internally. You have to provide both the name and the type when getting a value. If you choose the wrong type there is no entry. However this has a big potential for errors, like when you put in a byte and try to get out an int. So I think this is not a good idea.
import reflect.runtime.universe.TypeTag
class TypedMap[K](val inner:Map[(K, TypeTag[_]), Any]) extends AnyVal {
def updated[V](key:K, value:V)(implicit tag:TypeTag[V]) = new TypedMap[K](inner + ((key, tag) -> value))
def apply[V](key:K)(implicit tag:TypeTag[V]) = inner.apply((key, tag)).asInstanceOf[V]
def get[V](key:K)(implicit tag:TypeTag[V]) = inner.get((key, tag)).asInstanceOf[Option[V]]
}
object TypedMap {
def empty[K] = new TypedMap[K](Map.empty)
}
Usage:
scala> val x = TypedMap.empty[String].updated("a", 1).updated("b", "a string")
x: TypedMap[String] = TypedMap#30e1a76d
scala> x.apply[Int]("a")
res0: Int = 1
scala> x.apply[String]("b")
res1: String = a string
// this is what happens when you try to get something out with the wrong type.
scala> x.apply[Int]("b")
java.util.NoSuchElementException: key not found: (b,Int)
This is now very straightforward in shapeless,
scala> import shapeless._ ; import syntax.singleton._ ; import record._
import shapeless._
import syntax.singleton._
import record._
scala> val map = ("double" ->> 4.0) :: ("string" ->> "foo") :: HNil
map: ... <complex type elided> ... = 4.0 :: foo :: HNil
scala> map("double")
res0: Double with shapeless.record.KeyTag[String("double")] = 4.0
scala> map("string")
res1: String with shapeless.record.KeyTag[String("string")] = foo
scala> map("double")+1.0
res2: Double = 5.0
scala> val map2 = map.updateWith("double")(_+1.0)
map2: ... <complex type elided> ... = 5.0 :: foo :: HNil
scala> map2("double")
res3: Double = 5.0
This is with shapeless 2.0.0-SNAPSHOT as of the date of this answer.
I finally found my own solution, which worked best in my case:
case class Container[+T](element: T) {
def get[T]: T = {
element.asInstanceOf[T]
}
}
val map: Map[String, Container[Any]] = Map("a" -> Container[Double](4.0), "b" -> Container[String]("test"))
val double: Double = map.apply("a").get[Double]
val string: String = map.apply("b").get[String]
(a) Scala containers don't track type information for what's placed inside them, and
(b) the return "type" for an apply/get method with a simple String parameter/key is going to be static for a given instance of the object the method is to be applied to.
This feels very much like a design decision that needs to be rethought.
I don't think there's a way to get bare map.apply() to do what you'd want. As the other answers suggest, some sort of container class will be necessary. Here's an example that restricts the values to be only certain types (String, Double, Int, in this case):
sealed trait MapVal
case class StringMapVal(value: String) extends MapVal
case class DoubleMapVal(value: Double) extends MapVal
case class IntMapVal(value: Int) extends MapVal
val myMap: Map[String, MapVal] =
Map("key1" -> StringMapVal("value1"),
"key2" -> DoubleMapVal(3.14),
"key3" -> IntMapVal(42))
myMap.keys.foreach { k =>
val message =
myMap(k) match { // map.apply() in your example code
case StringMapVal(x) => "string: %s".format(x)
case DoubleMapVal(x) => "double: %.2f".format(x)
case IntMapVal(x) => "int: %d".format(x)
}
println(message)
}
The main benefit of the sealted trait is compile-time checking for non-exhaustive matches in pattern matching.
I also like this approach because it's relatively simple by Scala standards. You can go off into the weeds for something more robust, but in my opinion you're into diminishing returns pretty quickly.
If you want to do this you'd have to specify the type of Container to be Any, because Any is a supertype of both Double and String.
val d: Container[Any] = new Container(4.0)
val str: Container[Any] = new Container("string")
val m: Map[String, Container[Any]] = Map("double" -> d, "string" -> str)
Or to make things easier, you can change the definition of Container so that it's no longer type invariant:
class Container[+T](element: T) {
def get: T = element
override def toString = s"Container($element)"
}
val d: Container[Double] = new Container(4.0)
val str: Container[String] = new Container("string")
val m: Map[String, Container[Any]] = Map("double" -> d, "string" -> str)
There is a way but it's complicated. See Unboxed union types in Scala. Essentially you'll have to type the Map to some type Int |v| Double to be able to hold both Int and Double. You'll also pay a high price in compile times.
Is there a nice way I can convert a Scala case class instance, e.g.
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
into a mapping of some kind, e.g.
getCCParams(x) returns "param1" -> "hello", "param2" -> "world"
Which works for any case class, not just predefined ones. I've found you can pull the case class name out by writing a method that interrogates the underlying Product class, e.g.
def getCCName(caseobj: Product) = caseobj.productPrefix
getCCName(x) returns "MyClass"
So I'm looking for a similar solution but for the case class fields. I'd imagine a solution might have to use Java reflection, but I'd hate to write something that might break in a future release of Scala if the underlying implementation of case classes changes.
Currently I'm working on a Scala server and defining the protocol and all its messages and exceptions using case classes, as they are such a beautiful, concise construct for this. But I then need to translate them into a Java map to send over the messaging layer for any client implementation to use. My current implementation just defines a translation for each case class separately, but it would be nice to find a generalised solution.
This should work:
def getCCParams(cc: AnyRef) =
cc.getClass.getDeclaredFields.foldLeft(Map.empty[String, Any]) { (a, f) =>
f.setAccessible(true)
a + (f.getName -> f.get(cc))
}
Because case classes extend Product one can simply use .productIterator to get field values:
def getCCParams(cc: Product) = cc.getClass.getDeclaredFields.map( _.getName ) // all field names
.zip( cc.productIterator.to ).toMap // zipped with all values
Or alternatively:
def getCCParams(cc: Product) = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map( _.getName -> values.next ).toMap
}
One advantage of Product is that you don't need to call setAccessible on the field to read its value. Another is that productIterator doesn't use reflection.
Note that this example works with simple case classes that don't extend other classes and don't declare fields outside the constructor.
Starting Scala 2.13, case classes (as implementations of Product) are provided with a productElementNames method which returns an iterator over their field's names.
By zipping field names with field values obtained with productIterator we can generically obtain the associated Map:
// case class MyClass(param1: String, param2: String)
// val x = MyClass("hello", "world")
(x.productElementNames zip x.productIterator).toMap
// Map[String,Any] = Map("param1" -> "hello", "param2" -> "world")
If anybody looks for a recursive version, here is the modification of #Andrejs's solution:
def getCCParams(cc: Product): Map[String, Any] = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map {
_.getName -> (values.next() match {
case p: Product if p.productArity > 0 => getCCParams(p)
case x => x
})
}.toMap
}
It also expands the nested case-classes into maps at any level of nesting.
Here's a simple variation if you don't care about making it a generic function:
case class Person(name:String, age:Int)
def personToMap(person: Person): Map[String, Any] = {
val fieldNames = person.getClass.getDeclaredFields.map(_.getName)
val vals = Person.unapply(person).get.productIterator.toSeq
fieldNames.zip(vals).toMap
}
scala> println(personToMap(Person("Tom", 50)))
res02: scala.collection.immutable.Map[String,Any] = Map(name -> Tom, age -> 50)
If you happen to be using Json4s, you could do the following:
import org.json4s.{Extraction, _}
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
Extraction.decompose(x)(DefaultFormats).values.asInstanceOf[Map[String,String]]
Solution with ProductCompletion from interpreter package:
import tools.nsc.interpreter.ProductCompletion
def getCCParams(cc: Product) = {
val pc = new ProductCompletion(cc)
pc.caseNames.zip(pc.caseFields).toMap
}
You could use shapeless.
Let
case class X(a: Boolean, b: String,c:Int)
case class Y(a: String, b: String)
Define a LabelledGeneric representation
import shapeless._
import shapeless.ops.product._
import shapeless.syntax.std.product._
object X {
implicit val lgenX = LabelledGeneric[X]
}
object Y {
implicit val lgenY = LabelledGeneric[Y]
}
Define two typeclasses to provide the toMap methods
object ToMapImplicits {
implicit class ToMapOps[A <: Product](val a: A)
extends AnyVal {
def mkMapAny(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, Any] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v }
}
implicit class ToMapOps2[A <: Product](val a: A)
extends AnyVal {
def mkMapString(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, String] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v.toString }
}
}
Then you can use it like this.
object Run extends App {
import ToMapImplicits._
val x: X = X(true, "bike",26)
val y: Y = Y("first", "second")
val anyMapX: Map[String, Any] = x.mkMapAny
val anyMapY: Map[String, Any] = y.mkMapAny
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
val stringMapX: Map[String, String] = x.mkMapString
val stringMapY: Map[String, String] = y.mkMapString
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
}
which prints
anyMapX = Map(c -> 26, b -> bike, a -> true)
anyMapY = Map(b -> second, a -> first)
stringMapX = Map(c -> 26, b -> bike, a -> true)
stringMapY = Map(b -> second, a -> first)
For nested case classes, (thus nested maps)
check another answer
I don't know about nice... but this seems to work, at least for this very very basic example. It probably needs some work but might be enough to get you started? Basically it filters out all "known" methods from a case class (or any other class :/ )
object CaseMappingTest {
case class MyCase(a: String, b: Int)
def caseClassToMap(obj: AnyRef) = {
val c = obj.getClass
val predefined = List("$tag", "productArity", "productPrefix", "hashCode",
"toString")
val casemethods = c.getMethods.toList.filter{
n =>
(n.getParameterTypes.size == 0) &&
(n.getDeclaringClass == c) &&
(! predefined.exists(_ == n.getName))
}
val values = casemethods.map(_.invoke(obj, null))
casemethods.map(_.getName).zip(values).foldLeft(Map[String, Any]())(_+_)
}
def main(args: Array[String]) {
println(caseClassToMap(MyCase("foo", 1)))
// prints: Map(a -> foo, b -> 1)
}
}
commons.mapper.Mappers.Mappers.beanToMap(caseClassBean)
Details: https://github.com/hank-whu/common4s
With the use of Java reflection, but no change of access level. Converts Product and case class to Map[String, String]:
def productToMap[T <: Product](obj: T, prefix: String): Map[String, String] = {
val clazz = obj.getClass
val fields = clazz.getDeclaredFields.map(_.getName).toSet
val methods = clazz.getDeclaredMethods.filter(method => fields.contains(method.getName))
methods.foldLeft(Map[String, String]()) { case (acc, method) =>
val value = method.invoke(obj).toString
val key = if (prefix.isEmpty) method.getName else s"${prefix}_${method.getName}"
acc + (key -> value)
}
}
Modern variation with Scala 3 might also be a bit simplified as with the following example that is similar to the answer posted by Walter Chang above.
def getCCParams(cc: AnyRef): Map[String, Any] =
cc.getClass.getDeclaredFields
.tapEach(_.setAccessible(true))
.foldLeft(Map.empty)((a, f) => a + (f.getName -> f.get(cc)))