Related
Is there a nice way I can convert a Scala case class instance, e.g.
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
into a mapping of some kind, e.g.
getCCParams(x) returns "param1" -> "hello", "param2" -> "world"
Which works for any case class, not just predefined ones. I've found you can pull the case class name out by writing a method that interrogates the underlying Product class, e.g.
def getCCName(caseobj: Product) = caseobj.productPrefix
getCCName(x) returns "MyClass"
So I'm looking for a similar solution but for the case class fields. I'd imagine a solution might have to use Java reflection, but I'd hate to write something that might break in a future release of Scala if the underlying implementation of case classes changes.
Currently I'm working on a Scala server and defining the protocol and all its messages and exceptions using case classes, as they are such a beautiful, concise construct for this. But I then need to translate them into a Java map to send over the messaging layer for any client implementation to use. My current implementation just defines a translation for each case class separately, but it would be nice to find a generalised solution.
This should work:
def getCCParams(cc: AnyRef) =
cc.getClass.getDeclaredFields.foldLeft(Map.empty[String, Any]) { (a, f) =>
f.setAccessible(true)
a + (f.getName -> f.get(cc))
}
Because case classes extend Product one can simply use .productIterator to get field values:
def getCCParams(cc: Product) = cc.getClass.getDeclaredFields.map( _.getName ) // all field names
.zip( cc.productIterator.to ).toMap // zipped with all values
Or alternatively:
def getCCParams(cc: Product) = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map( _.getName -> values.next ).toMap
}
One advantage of Product is that you don't need to call setAccessible on the field to read its value. Another is that productIterator doesn't use reflection.
Note that this example works with simple case classes that don't extend other classes and don't declare fields outside the constructor.
Starting Scala 2.13, case classes (as implementations of Product) are provided with a productElementNames method which returns an iterator over their field's names.
By zipping field names with field values obtained with productIterator we can generically obtain the associated Map:
// case class MyClass(param1: String, param2: String)
// val x = MyClass("hello", "world")
(x.productElementNames zip x.productIterator).toMap
// Map[String,Any] = Map("param1" -> "hello", "param2" -> "world")
If anybody looks for a recursive version, here is the modification of #Andrejs's solution:
def getCCParams(cc: Product): Map[String, Any] = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map {
_.getName -> (values.next() match {
case p: Product if p.productArity > 0 => getCCParams(p)
case x => x
})
}.toMap
}
It also expands the nested case-classes into maps at any level of nesting.
Here's a simple variation if you don't care about making it a generic function:
case class Person(name:String, age:Int)
def personToMap(person: Person): Map[String, Any] = {
val fieldNames = person.getClass.getDeclaredFields.map(_.getName)
val vals = Person.unapply(person).get.productIterator.toSeq
fieldNames.zip(vals).toMap
}
scala> println(personToMap(Person("Tom", 50)))
res02: scala.collection.immutable.Map[String,Any] = Map(name -> Tom, age -> 50)
If you happen to be using Json4s, you could do the following:
import org.json4s.{Extraction, _}
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
Extraction.decompose(x)(DefaultFormats).values.asInstanceOf[Map[String,String]]
Solution with ProductCompletion from interpreter package:
import tools.nsc.interpreter.ProductCompletion
def getCCParams(cc: Product) = {
val pc = new ProductCompletion(cc)
pc.caseNames.zip(pc.caseFields).toMap
}
You could use shapeless.
Let
case class X(a: Boolean, b: String,c:Int)
case class Y(a: String, b: String)
Define a LabelledGeneric representation
import shapeless._
import shapeless.ops.product._
import shapeless.syntax.std.product._
object X {
implicit val lgenX = LabelledGeneric[X]
}
object Y {
implicit val lgenY = LabelledGeneric[Y]
}
Define two typeclasses to provide the toMap methods
object ToMapImplicits {
implicit class ToMapOps[A <: Product](val a: A)
extends AnyVal {
def mkMapAny(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, Any] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v }
}
implicit class ToMapOps2[A <: Product](val a: A)
extends AnyVal {
def mkMapString(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, String] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v.toString }
}
}
Then you can use it like this.
object Run extends App {
import ToMapImplicits._
val x: X = X(true, "bike",26)
val y: Y = Y("first", "second")
val anyMapX: Map[String, Any] = x.mkMapAny
val anyMapY: Map[String, Any] = y.mkMapAny
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
val stringMapX: Map[String, String] = x.mkMapString
val stringMapY: Map[String, String] = y.mkMapString
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
}
which prints
anyMapX = Map(c -> 26, b -> bike, a -> true)
anyMapY = Map(b -> second, a -> first)
stringMapX = Map(c -> 26, b -> bike, a -> true)
stringMapY = Map(b -> second, a -> first)
For nested case classes, (thus nested maps)
check another answer
I don't know about nice... but this seems to work, at least for this very very basic example. It probably needs some work but might be enough to get you started? Basically it filters out all "known" methods from a case class (or any other class :/ )
object CaseMappingTest {
case class MyCase(a: String, b: Int)
def caseClassToMap(obj: AnyRef) = {
val c = obj.getClass
val predefined = List("$tag", "productArity", "productPrefix", "hashCode",
"toString")
val casemethods = c.getMethods.toList.filter{
n =>
(n.getParameterTypes.size == 0) &&
(n.getDeclaringClass == c) &&
(! predefined.exists(_ == n.getName))
}
val values = casemethods.map(_.invoke(obj, null))
casemethods.map(_.getName).zip(values).foldLeft(Map[String, Any]())(_+_)
}
def main(args: Array[String]) {
println(caseClassToMap(MyCase("foo", 1)))
// prints: Map(a -> foo, b -> 1)
}
}
commons.mapper.Mappers.Mappers.beanToMap(caseClassBean)
Details: https://github.com/hank-whu/common4s
With the use of Java reflection, but no change of access level. Converts Product and case class to Map[String, String]:
def productToMap[T <: Product](obj: T, prefix: String): Map[String, String] = {
val clazz = obj.getClass
val fields = clazz.getDeclaredFields.map(_.getName).toSet
val methods = clazz.getDeclaredMethods.filter(method => fields.contains(method.getName))
methods.foldLeft(Map[String, String]()) { case (acc, method) =>
val value = method.invoke(obj).toString
val key = if (prefix.isEmpty) method.getName else s"${prefix}_${method.getName}"
acc + (key -> value)
}
}
Modern variation with Scala 3 might also be a bit simplified as with the following example that is similar to the answer posted by Walter Chang above.
def getCCParams(cc: AnyRef): Map[String, Any] =
cc.getClass.getDeclaredFields
.tapEach(_.setAccessible(true))
.foldLeft(Map.empty)((a, f) => a + (f.getName -> f.get(cc)))
What is the simplest way to convert a java.util.IdentityHashMap[A,B] into a subtype of scala.immutable.Map[A,B]? I need to keep keys separate unless they are eq.
Here's what I've tried so far:
scala> case class Example()
scala> val m = new java.util.IdentityHashMap[Example, String]()
scala> m.put(Example(), "first!")
scala> m.put(Example(), "second!")
scala> m.asScala // got a mutable Scala equivalent OK
res14: scala.collection.mutable.Map[Example,String] = Map(Example() -> first!, Example() -> second!)
scala> m.asScala.toMap // doesn't work, since toMap() removes duplicate keys (testing with ==)
res15: scala.collection.immutable.Map[Example,String] = Map(Example() -> second!)
Here's a simple implementation of identity map in Scala. In usage, it should be similar to standard immutable map.
Example usage:
val im = IdentityMap(
new String("stuff") -> 5,
new String("stuff") -> 10)
println(im) // IdentityMap(stuff -> 5, stuff -> 10)
Your case:
import scala.collection.JavaConverters._
import java.{util => ju}
val javaIdentityMap: ju.IdentityHashMap = ???
val scalaIdentityMap = IdentityMap.empty[String,Int] ++ javaIdentityMap.asScala
Implementation itself (for performance reasons, there may be some more methods that need to be overridden):
import scala.collection.generic.ImmutableMapFactory
import scala.collection.immutable.MapLike
import IdentityMap.{Wrapper, wrap}
class IdentityMap[A, +B] private(underlying: Map[Wrapper[A], B])
extends Map[A, B] with MapLike[A, B, IdentityMap[A, B]] {
def +[B1 >: B](kv: (A, B1)) =
new IdentityMap(underlying + ((wrap(kv._1), kv._2)))
def -(key: A) =
new IdentityMap(underlying - wrap(key))
def iterator =
underlying.iterator.map {
case (kw, v) => (kw.value, v)
}
def get(key: A) =
underlying.get(wrap(key))
override def size: Int =
underlying.size
override def empty =
new IdentityMap(underlying.empty)
override def stringPrefix =
"IdentityMap"
}
object IdentityMap extends ImmutableMapFactory[IdentityMap] {
def empty[A, B] =
new IdentityMap(Map.empty)
private class Wrapper[A](val value: A) {
override def toString: String =
value.toString
override def equals(other: Any) = other match {
case otherWrapper: Wrapper[_] =>
value.asInstanceOf[AnyRef] eq otherWrapper.value.asInstanceOf[AnyRef]
case _ => false
}
override def hashCode =
System.identityHashCode(value)
}
private def wrap[A](key: A) =
new Wrapper(key)
}
One way to handle this would be change what equality means for the class, e.g.
scala> case class Example() {
override def equals( that:Any ) = that match {
case that:AnyRef => this eq that
case _ => false
}
}
defined class Example
scala> val m = new java.util.IdentityHashMap[Example, String]()
m: java.util.IdentityHashMap[Example,String] = {}
scala> m.put(Example(), "first!")
res1: String = null
scala> m.put(Example(), "second!")
res2: String = null
scala> import scala.collection.JavaConverters._
import scala.collection.JavaConverters._
scala> m.asScala
res3: scala.collection.mutable.Map[Example,String] = Map(Example() -> second!, Example() -> first!)
scala> m.asScala.toMap
res4: scala.collection.immutable.Map[Example,String] = Map(Example() -> second!, Example() -> first!)
Or if you don't want to change equality for the class, you could make a wrapper.
Of course, this won't perform as well as a Map that uses eq instead of ==; it might be worth asking for one....
Let's say I have this example case class
case class Test(key1: Int, key2: String, key3: String)
And I have a map
myMap = Map("k1" -> 1, "k2" -> "val2", "k3" -> "val3")
I need to convert this map to my case class in several places of the code, something like this:
myMap.asInstanceOf[Test]
What would be the easiest way of doing that? Can I somehow use implicit for this?
Two ways of doing this elegantly. The first is to use an unapply, the second to use an implicit class (2.10+) with a type class to do the conversion for you.
1) The unapply is the simplest and most straight forward way to write such a conversion. It does not do any "magic" and can readily be found if using an IDE. Do note, doing this sort of thing can clutter your companion object and cause your code to sprout dependencies in places you might not want:
object MyClass{
def unapply(values: Map[String,String]) = try{
Some(MyClass(values("key").toInteger, values("next").toFloat))
} catch{
case NonFatal(ex) => None
}
}
Which could be used like this:
val MyClass(myInstance) = myMap
be careful, as it would throw an exception if not matched completely.
2) Doing an implicit class with a type class creates more boilerplate for you but also allows a lot of room to expand the same pattern to apply to other case classes:
implicit class Map2Class(values: Map[String,String]){
def convert[A](implicit mapper: MapConvert[A]) = mapper conv (values)
}
trait MapConvert[A]{
def conv(values: Map[String,String]): A
}
and as an example you'd do something like this:
object MyObject{
implicit val new MapConvert[MyObject]{
def conv(values: Map[String, String]) = MyObject(values("key").toInt, values("foo").toFloat)
}
}
which could then be used just as you had described above:
val myInstance = myMap.convert[MyObject]
throwing an exception if no conversion could be made. Using this pattern converting between a Map[String, String] to any object would require just another implicit (and that implicit to be in scope.)
Here is an alternative non-boilerplate method that uses Scala reflection (Scala 2.10 and above) and doesn't require a separately compiled module:
import org.specs2.mutable.Specification
import scala.reflect._
import scala.reflect.runtime.universe._
case class Test(t: String, ot: Option[String])
package object ccFromMap {
def fromMap[T: TypeTag: ClassTag](m: Map[String,_]) = {
val rm = runtimeMirror(classTag[T].runtimeClass.getClassLoader)
val classTest = typeOf[T].typeSymbol.asClass
val classMirror = rm.reflectClass(classTest)
val constructor = typeOf[T].decl(termNames.CONSTRUCTOR).asMethod
val constructorMirror = classMirror.reflectConstructor(constructor)
val constructorArgs = constructor.paramLists.flatten.map( (param: Symbol) => {
val paramName = param.name.toString
if(param.typeSignature <:< typeOf[Option[Any]])
m.get(paramName)
else
m.get(paramName).getOrElse(throw new IllegalArgumentException("Map is missing required parameter named " + paramName))
})
constructorMirror(constructorArgs:_*).asInstanceOf[T]
}
}
class CaseClassFromMapSpec extends Specification {
"case class" should {
"be constructable from a Map" in {
import ccFromMap._
fromMap[Test](Map("t" -> "test", "ot" -> "test2")) === Test("test", Some("test2"))
fromMap[Test](Map("t" -> "test")) === Test("test", None)
}
}
}
Jonathan Chow implements a Scala macro (designed for Scala 2.11) that generalizes this behavior and eliminates the boilerplate.
http://blog.echo.sh/post/65955606729/exploring-scala-macros-map-to-case-class-conversion
import scala.reflect.macros.Context
trait Mappable[T] {
def toMap(t: T): Map[String, Any]
def fromMap(map: Map[String, Any]): T
}
object Mappable {
implicit def materializeMappable[T]: Mappable[T] = macro materializeMappableImpl[T]
def materializeMappableImpl[T: c.WeakTypeTag](c: Context): c.Expr[Mappable[T]] = {
import c.universe._
val tpe = weakTypeOf[T]
val companion = tpe.typeSymbol.companionSymbol
val fields = tpe.declarations.collectFirst {
case m: MethodSymbol if m.isPrimaryConstructor ⇒ m
}.get.paramss.head
val (toMapParams, fromMapParams) = fields.map { field ⇒
val name = field.name
val decoded = name.decoded
val returnType = tpe.declaration(name).typeSignature
(q"$decoded → t.$name", q"map($decoded).asInstanceOf[$returnType]")
}.unzip
c.Expr[Mappable[T]] { q"""
new Mappable[$tpe] {
def toMap(t: $tpe): Map[String, Any] = Map(..$toMapParams)
def fromMap(map: Map[String, Any]): $tpe = $companion(..$fromMapParams)
}
""" }
}
}
This works well for me,if you use jackson for scala:
def from[T](map: Map[String, Any])(implicit m: Manifest[T]): T = {
val mapper = new ObjectMapper() with ScalaObjectMapper
mapper.convertValue(map)
}
Reference from:Convert a Map<String, String> to a POJO
I don't love this code, but I suppose this is possible if you can get the map values into a tuple and then use the tupled constructor for your case class. That would look something like this:
val myMap = Map("k1" -> 1, "k2" -> "val2", "k3" -> "val3")
val params = Some(myMap.map(_._2).toList).flatMap{
case List(a:Int,b:String,c:String) => Some((a,b,c))
case other => None
}
val myCaseClass = params.map(Test.tupled(_))
println(myCaseClass)
You have to be careful to make sure the list of values is exactly 3 elements and that they are the correct types. If not, you end up with a None instead. Like I said, not great, but it shows that it is possible.
commons.mapper.Mappers.mapToBean[CaseClassBean](map)
Details: https://github.com/hank-whu/common4s
Here's an update to Jonathon's answer for Scala 3 (which no longer has TypeTag). Be aware that this won't work for case classes nested inside of other classes. But for top-level case classes it seems to work fine.
import scala.reflect.ClassTag
object Reflect:
def fromMap[T <: Product : ClassTag](m: Map[String, ?]): T =
val classTag = implicitly[ClassTag[T]]
val constructor = classTag.runtimeClass.getDeclaredConstructors.head
val constructorArgs = constructor.getParameters()
.map { param =>
val paramName = param.getName
if (param.getType == classOf[Option[_]])
m.get(paramName)
else
m.get(paramName)
.getOrElse(throw new IllegalArgumentException(s"Missing required parameter: $paramName"))
}
constructor.newInstance(constructorArgs: _*).asInstanceOf[T]
And a test for the above:
case class Foo(a: String, b: Int, c: Option[String] = None)
case class Bar(a: String, b: Int, c: Option[Foo])
class ReflectSuite extends munit.FunSuite:
test("fromMap") {
val m = Map("a" -> "hello", "b" -> 42, "c" -> "world")
val foo = Reflect.fromMap[Foo](m)
assertEquals(foo, Foo("hello", 42, Some("world")))
val n = Map("a" -> "hello", "b" -> 43)
val foo2 = Reflect.fromMap[Foo](n)
assertEquals(foo2, Foo("hello", 43))
val o = Map("a" -> "yo", "b" -> 44, "c" -> foo)
val bar = Reflect.fromMap[Bar](o)
assertEquals(bar, Bar("yo", 44, Some(foo)))
}
test("fromMap should fail when required parameter is missing") {
val m = Map("a" -> "hello", "c" -> "world")
intercept[java.lang.IllegalArgumentException] {
Reflect.fromMap[Foo](m)
}
}
I need a Map where I put different types of values (Double, String, Int,...) in it, key can be String.
Is there a way to do this, so that I get the correct type with map.apply(k) like
val map: Map[String, SomeType] = Map()
val d: Double = map.apply("double")
val str: String = map.apply("string")
I already tried it with a generic type
class Container[T](element: T) {
def get: T = element
}
val d: Container[Double] = new Container(4.0)
val str: Container[String] = new Container("string")
val m: Map[String, Container] = Map("double" -> d, "string" -> str)
but it's not possible since Container takes an parameter. Is there any solution to this?
This is not straightforward.
The type of the value depends on the key. So the key has to carry the information about what type its value is. This is a common pattern. It is used for example in SBT (see for example SettingsKey[T]) and Shapeless Records (Example). However, in SBT the keys are a huge, complex class hierarchy of its own, and the HList in shapeless is pretty complex and also does more than you want.
So here is a small example of how you could implement this. The key knows the type, and the only way to create a Record or to get a value out of a Record is the key. We use a Map[Key, Any] internally as storage, but the casts are hidden and guaranteed to succeed. There is an operator to create records from keys, and an operator to merge records. I chose the operators so you can concatenate Records without having to use brackets.
sealed trait Record {
def apply[T](key:Key[T]) : T
def get[T](key:Key[T]) : Option[T]
def ++ (that:Record) : Record
}
private class RecordImpl(private val inner:Map[Key[_], Any]) extends Record {
def apply[T](key:Key[T]) : T = inner.apply(key).asInstanceOf[T]
def get[T](key:Key[T]) : Option[T] = inner.get(key).asInstanceOf[Option[T]]
def ++ (that:Record) = that match {
case that:RecordImpl => new RecordImpl(this.inner ++ that.inner)
}
}
final class Key[T] {
def ~>(value:T) : Record = new RecordImpl(Map(this -> value))
}
object Key {
def apply[T] = new Key[T]
}
Here is how you would use this. First define some keys:
val a = Key[Int]
val b = Key[String]
val c = Key[Float]
Then use them to create a record
val record = a ~> 1 ++ b ~> "abc" ++ c ~> 1.0f
When accessing the record using the keys, you will get a value of the right type back
scala> record(a)
res0: Int = 1
scala> record(b)
res1: String = abc
scala> record(c)
res2: Float = 1.0
I find this sort of data structure very useful. Sometimes you need more flexibility than a case class provides, but you don't want to resort to something completely type-unsafe like a Map[String,Any]. This is a good middle ground.
Edit: another option would be to have a map that uses a (name, type) pair as the real key internally. You have to provide both the name and the type when getting a value. If you choose the wrong type there is no entry. However this has a big potential for errors, like when you put in a byte and try to get out an int. So I think this is not a good idea.
import reflect.runtime.universe.TypeTag
class TypedMap[K](val inner:Map[(K, TypeTag[_]), Any]) extends AnyVal {
def updated[V](key:K, value:V)(implicit tag:TypeTag[V]) = new TypedMap[K](inner + ((key, tag) -> value))
def apply[V](key:K)(implicit tag:TypeTag[V]) = inner.apply((key, tag)).asInstanceOf[V]
def get[V](key:K)(implicit tag:TypeTag[V]) = inner.get((key, tag)).asInstanceOf[Option[V]]
}
object TypedMap {
def empty[K] = new TypedMap[K](Map.empty)
}
Usage:
scala> val x = TypedMap.empty[String].updated("a", 1).updated("b", "a string")
x: TypedMap[String] = TypedMap#30e1a76d
scala> x.apply[Int]("a")
res0: Int = 1
scala> x.apply[String]("b")
res1: String = a string
// this is what happens when you try to get something out with the wrong type.
scala> x.apply[Int]("b")
java.util.NoSuchElementException: key not found: (b,Int)
This is now very straightforward in shapeless,
scala> import shapeless._ ; import syntax.singleton._ ; import record._
import shapeless._
import syntax.singleton._
import record._
scala> val map = ("double" ->> 4.0) :: ("string" ->> "foo") :: HNil
map: ... <complex type elided> ... = 4.0 :: foo :: HNil
scala> map("double")
res0: Double with shapeless.record.KeyTag[String("double")] = 4.0
scala> map("string")
res1: String with shapeless.record.KeyTag[String("string")] = foo
scala> map("double")+1.0
res2: Double = 5.0
scala> val map2 = map.updateWith("double")(_+1.0)
map2: ... <complex type elided> ... = 5.0 :: foo :: HNil
scala> map2("double")
res3: Double = 5.0
This is with shapeless 2.0.0-SNAPSHOT as of the date of this answer.
I finally found my own solution, which worked best in my case:
case class Container[+T](element: T) {
def get[T]: T = {
element.asInstanceOf[T]
}
}
val map: Map[String, Container[Any]] = Map("a" -> Container[Double](4.0), "b" -> Container[String]("test"))
val double: Double = map.apply("a").get[Double]
val string: String = map.apply("b").get[String]
(a) Scala containers don't track type information for what's placed inside them, and
(b) the return "type" for an apply/get method with a simple String parameter/key is going to be static for a given instance of the object the method is to be applied to.
This feels very much like a design decision that needs to be rethought.
I don't think there's a way to get bare map.apply() to do what you'd want. As the other answers suggest, some sort of container class will be necessary. Here's an example that restricts the values to be only certain types (String, Double, Int, in this case):
sealed trait MapVal
case class StringMapVal(value: String) extends MapVal
case class DoubleMapVal(value: Double) extends MapVal
case class IntMapVal(value: Int) extends MapVal
val myMap: Map[String, MapVal] =
Map("key1" -> StringMapVal("value1"),
"key2" -> DoubleMapVal(3.14),
"key3" -> IntMapVal(42))
myMap.keys.foreach { k =>
val message =
myMap(k) match { // map.apply() in your example code
case StringMapVal(x) => "string: %s".format(x)
case DoubleMapVal(x) => "double: %.2f".format(x)
case IntMapVal(x) => "int: %d".format(x)
}
println(message)
}
The main benefit of the sealted trait is compile-time checking for non-exhaustive matches in pattern matching.
I also like this approach because it's relatively simple by Scala standards. You can go off into the weeds for something more robust, but in my opinion you're into diminishing returns pretty quickly.
If you want to do this you'd have to specify the type of Container to be Any, because Any is a supertype of both Double and String.
val d: Container[Any] = new Container(4.0)
val str: Container[Any] = new Container("string")
val m: Map[String, Container[Any]] = Map("double" -> d, "string" -> str)
Or to make things easier, you can change the definition of Container so that it's no longer type invariant:
class Container[+T](element: T) {
def get: T = element
override def toString = s"Container($element)"
}
val d: Container[Double] = new Container(4.0)
val str: Container[String] = new Container("string")
val m: Map[String, Container[Any]] = Map("double" -> d, "string" -> str)
There is a way but it's complicated. See Unboxed union types in Scala. Essentially you'll have to type the Map to some type Int |v| Double to be able to hold both Int and Double. You'll also pay a high price in compile times.
Is there a nice way I can convert a Scala case class instance, e.g.
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
into a mapping of some kind, e.g.
getCCParams(x) returns "param1" -> "hello", "param2" -> "world"
Which works for any case class, not just predefined ones. I've found you can pull the case class name out by writing a method that interrogates the underlying Product class, e.g.
def getCCName(caseobj: Product) = caseobj.productPrefix
getCCName(x) returns "MyClass"
So I'm looking for a similar solution but for the case class fields. I'd imagine a solution might have to use Java reflection, but I'd hate to write something that might break in a future release of Scala if the underlying implementation of case classes changes.
Currently I'm working on a Scala server and defining the protocol and all its messages and exceptions using case classes, as they are such a beautiful, concise construct for this. But I then need to translate them into a Java map to send over the messaging layer for any client implementation to use. My current implementation just defines a translation for each case class separately, but it would be nice to find a generalised solution.
This should work:
def getCCParams(cc: AnyRef) =
cc.getClass.getDeclaredFields.foldLeft(Map.empty[String, Any]) { (a, f) =>
f.setAccessible(true)
a + (f.getName -> f.get(cc))
}
Because case classes extend Product one can simply use .productIterator to get field values:
def getCCParams(cc: Product) = cc.getClass.getDeclaredFields.map( _.getName ) // all field names
.zip( cc.productIterator.to ).toMap // zipped with all values
Or alternatively:
def getCCParams(cc: Product) = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map( _.getName -> values.next ).toMap
}
One advantage of Product is that you don't need to call setAccessible on the field to read its value. Another is that productIterator doesn't use reflection.
Note that this example works with simple case classes that don't extend other classes and don't declare fields outside the constructor.
Starting Scala 2.13, case classes (as implementations of Product) are provided with a productElementNames method which returns an iterator over their field's names.
By zipping field names with field values obtained with productIterator we can generically obtain the associated Map:
// case class MyClass(param1: String, param2: String)
// val x = MyClass("hello", "world")
(x.productElementNames zip x.productIterator).toMap
// Map[String,Any] = Map("param1" -> "hello", "param2" -> "world")
If anybody looks for a recursive version, here is the modification of #Andrejs's solution:
def getCCParams(cc: Product): Map[String, Any] = {
val values = cc.productIterator
cc.getClass.getDeclaredFields.map {
_.getName -> (values.next() match {
case p: Product if p.productArity > 0 => getCCParams(p)
case x => x
})
}.toMap
}
It also expands the nested case-classes into maps at any level of nesting.
Here's a simple variation if you don't care about making it a generic function:
case class Person(name:String, age:Int)
def personToMap(person: Person): Map[String, Any] = {
val fieldNames = person.getClass.getDeclaredFields.map(_.getName)
val vals = Person.unapply(person).get.productIterator.toSeq
fieldNames.zip(vals).toMap
}
scala> println(personToMap(Person("Tom", 50)))
res02: scala.collection.immutable.Map[String,Any] = Map(name -> Tom, age -> 50)
If you happen to be using Json4s, you could do the following:
import org.json4s.{Extraction, _}
case class MyClass(param1: String, param2: String)
val x = MyClass("hello", "world")
Extraction.decompose(x)(DefaultFormats).values.asInstanceOf[Map[String,String]]
Solution with ProductCompletion from interpreter package:
import tools.nsc.interpreter.ProductCompletion
def getCCParams(cc: Product) = {
val pc = new ProductCompletion(cc)
pc.caseNames.zip(pc.caseFields).toMap
}
You could use shapeless.
Let
case class X(a: Boolean, b: String,c:Int)
case class Y(a: String, b: String)
Define a LabelledGeneric representation
import shapeless._
import shapeless.ops.product._
import shapeless.syntax.std.product._
object X {
implicit val lgenX = LabelledGeneric[X]
}
object Y {
implicit val lgenY = LabelledGeneric[Y]
}
Define two typeclasses to provide the toMap methods
object ToMapImplicits {
implicit class ToMapOps[A <: Product](val a: A)
extends AnyVal {
def mkMapAny(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, Any] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v }
}
implicit class ToMapOps2[A <: Product](val a: A)
extends AnyVal {
def mkMapString(implicit toMap: ToMap.Aux[A, Symbol, Any]): Map[String, String] =
a.toMap[Symbol, Any]
.map { case (k: Symbol, v) => k.name -> v.toString }
}
}
Then you can use it like this.
object Run extends App {
import ToMapImplicits._
val x: X = X(true, "bike",26)
val y: Y = Y("first", "second")
val anyMapX: Map[String, Any] = x.mkMapAny
val anyMapY: Map[String, Any] = y.mkMapAny
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
val stringMapX: Map[String, String] = x.mkMapString
val stringMapY: Map[String, String] = y.mkMapString
println("anyMapX = " + anyMapX)
println("anyMapY = " + anyMapY)
}
which prints
anyMapX = Map(c -> 26, b -> bike, a -> true)
anyMapY = Map(b -> second, a -> first)
stringMapX = Map(c -> 26, b -> bike, a -> true)
stringMapY = Map(b -> second, a -> first)
For nested case classes, (thus nested maps)
check another answer
I don't know about nice... but this seems to work, at least for this very very basic example. It probably needs some work but might be enough to get you started? Basically it filters out all "known" methods from a case class (or any other class :/ )
object CaseMappingTest {
case class MyCase(a: String, b: Int)
def caseClassToMap(obj: AnyRef) = {
val c = obj.getClass
val predefined = List("$tag", "productArity", "productPrefix", "hashCode",
"toString")
val casemethods = c.getMethods.toList.filter{
n =>
(n.getParameterTypes.size == 0) &&
(n.getDeclaringClass == c) &&
(! predefined.exists(_ == n.getName))
}
val values = casemethods.map(_.invoke(obj, null))
casemethods.map(_.getName).zip(values).foldLeft(Map[String, Any]())(_+_)
}
def main(args: Array[String]) {
println(caseClassToMap(MyCase("foo", 1)))
// prints: Map(a -> foo, b -> 1)
}
}
commons.mapper.Mappers.Mappers.beanToMap(caseClassBean)
Details: https://github.com/hank-whu/common4s
With the use of Java reflection, but no change of access level. Converts Product and case class to Map[String, String]:
def productToMap[T <: Product](obj: T, prefix: String): Map[String, String] = {
val clazz = obj.getClass
val fields = clazz.getDeclaredFields.map(_.getName).toSet
val methods = clazz.getDeclaredMethods.filter(method => fields.contains(method.getName))
methods.foldLeft(Map[String, String]()) { case (acc, method) =>
val value = method.invoke(obj).toString
val key = if (prefix.isEmpty) method.getName else s"${prefix}_${method.getName}"
acc + (key -> value)
}
}
Modern variation with Scala 3 might also be a bit simplified as with the following example that is similar to the answer posted by Walter Chang above.
def getCCParams(cc: AnyRef): Map[String, Any] =
cc.getClass.getDeclaredFields
.tapEach(_.setAccessible(true))
.foldLeft(Map.empty)((a, f) => a + (f.getName -> f.get(cc)))