Find the product of all entries of vector x - matlab

Here is what I am trying to do:
Let x be a vector with n entries x1,x2,...xn. Write a mat-lab program which computes the vector p with entries defined by
pk = X1*X2....Xk-1*Xk+1...Xn.
for each k =1,2,...n.
pk is the product of all the entries of x except xk. (use prod command of compute the product of all the entries, then divide by xk). Take the appropriate special action if either one of more the entries of x is zero. Using vectors throughout and no 'for' loop.
I spent too much time to figure out this problem. I still could not get it. Please help!

Brute force:
n = numel(x);
X = repmat(x(:),1,n); %// put vector in column form and repeat
X(1:n+1:end) = 1; %// make diagonal 1
result = prod(X); %// product of each column
Saving computations:
ind = find(x==0);
if numel(ind)>1 %// result is all zeros
result = zeros(size(x));
elseif numel(ind)==1 %// result is all zeros except at one entry
result = zeros(size(x));
result(ind) = prod(nonzeros(x));
else %// compute product of all elements and divide by each element
result = prod(x)./x;
end

Related

Generate a random sparse matrix with N non-zero-elements

I've written a function that generates a sparse matrix of size nxd
and puts in each column 2 non-zero values.
function [M] = generateSparse(n,d)
M = sparse(d,n);
sz = size(M);
nnzs = 2;
val = ceil(rand(nnzs,n));
inds = zeros(nnzs,d);
for i=1:n
ind = randperm(d,nnzs);
inds(:,i) = ind;
end
points = (1:n);
nnzInds = zeros(nnzs,d);
for i=1:nnzs
nnzInd = sub2ind(sz, inds(i,:), points);
nnzInds(i,:) = nnzInd;
end
M(nnzInds) = val;
end
However, I'd like to be able to give the function another parameter num-nnz which will make it choose randomly num-nnz cells and put there 1.
I can't use sprand as it requires density and I need the number of non-zero entries to be in-dependable from the matrix size. And giving a density is basically dependable of the matrix size.
I am a bit confused on how to pick the indices and fill them... I did with a loop which is extremely costly and would appreciate help.
EDIT:
Everything has to be sparse. A big enough matrix will crash in memory if I don't do it in a sparse way.
You seem close!
You could pick num_nnz random (unique) integers between 1 and the number of elements in the matrix, then assign the value 1 to the indices in those elements.
To pick the random unique integers, use randperm. To get the number of elements in the matrix use numel.
M = sparse(d, n); % create dxn sparse matrix
num_nnz = 10; % number of non-zero elements
idx = randperm(numel(M), num_nnz); % get unique random indices
M(idx) = 1; % Assign 1 to those indices

Comparing matrices of different size in matlab and storing values that are close

I have two matrices A and B. A(:,1) corresponds to an x-coordinate, A(:,2) corresponds to a y-coordinate, and A(:,3) corresponds to a certain radius. All three values in a row describe the same circle. Now let's say...
A =
[1,4,3]
[8,8,7]
[3,6,3]
B =
[1,3,3]
[1, 92,3]
[4,57,8]
[5,62,1]
[3,4,6]
[9,8,7]
What I need is to be able to loop through matrix A and determine if there are any rows in matrix B that are "similar" as in the x value is within a range (-2,2) of the x value of A (Likewise with the y-coordinate and radius).If it satisfies all three of these conditions, it will be added to a new matrix with the values that were in A. So for example I would need the above data to return...
ans =
[1,4,3]
[8,8,7]
Please help and thank you in advance to anyone willing to take the time!
You can use ismembertol.
result = A(ismembertol(A,B,2,'ByRows',1,'DataScale',1),:)
Manual method
A = [1,4,3;
8,8,7;
3,6,3];
B = [1,3,3;
1,92,3;
4,57,8;
5,62,1;
3,4,6;
9,8,7]; % example matrices
t = 2; % desired threshold
m = any(all(abs(bsxfun(#minus, A, permute(B, [3 2 1])))<=t, 2), 3);
result = A(m,:);
The key is using permute to move the first dimension of B to the third dimension. Then bsxfun computes the element-wise differences for all pairs of rows in the original matrices. A row of A should be selected if all the absolute differences with respect to any column of B are less than the desired threshold t. The resulting variable m is a logical index which is used for selecting those rows.
Using pdist2 (Statistics and Machine Learning Toolbox)
m = any(pdist2(A, B, 'chebychev')<=t, 2);
result = A(m,:);
Ths pdist2 function with the chebychev option computes the maximum coordinate difference (Chebychev distance, or L∞ metric) between pairs of rows.
With for loop
It should work:
A = [1,4,3;
8,8,7;
3,6,3]
B = [1,3,3;
1,92,3;
4,57,8;
5,62,1;
3,4,6;
9,8,7]
index = 1;
for i = 1:size(A,1)
C = abs(B - A(i,:));
if any(max(C,[],2)<=2)
out(index,:) = A(i,:);
index = index + 1
end
end
For each row of A, computes the absolute difference between B and that row, then checks if there exists a row in which the maximum is less than 2.
Without for loop
ind = any(max(abs(B - permute(A,[3 2 1])),[],2)<=2);
out = A(ind(:),:);

how to check the values of each variables from a resultant matrix in matlab?

I have sum of 3 cell arrays
A=72x1
B=72x720
C=72x90
resultant=A+B+C
size of resultant=72x64800
now when I find the minimum value with row and column indices I can locate the row element easily but how can I locate the column element in variables?
for example
after dong calculations for A,B,C I added them all and got a resultant in from of <72x(720x90)> or can say a matrix of integers of size <72x64800> then I found the minimum value of resultant with row and column index using the code below.
[minimumValue,ind]=min(resultant(:));
[row,col]=find(result== minimumValue);
then row got 14 and column got 6840 value..
now I can trace row 14 of all A,B,C variables easily but how can I know that the resultant column 6480 belongs to which combination of A,B,C?
Instead of using find, use the ind output from the min function. This is the linear index for minimumValue. To do that you can use ind2sub:
[r,c] = ind2sub(size(resultant),ind);
It is not quite clear what do you mean by resultant = A+B+C since you clearly don't sum them if you get a bigger array (72x64800), on the other hand, this is not a simple concatenation ([A B C]) since this would result in a 72x811 array.
However, assuming this is a concatenation you can do the following:
% get the 2nd dimension size of all matrices:
cols = cellfun(#(x) size(x,2),{A,B,C})
% create a vector with reapiting matrices names for all their columns:
mats = repelem(['A' 'B' 'C'],cols);
% get the relevant matrix for the c column:
mats(c)
so mats(c) will be the matrix with the minimum value.
EDIT:
From your comment I understand that your code looks something like this:
% arbitrary data:
A = rand(72,1);
B = rand(72,720);
C = rand(72,90);
% initializing:
K = size(B,2);
N = size(C,2);
counter = 1;
resultant = zeros(72,K*N);
% summing:
for k = 1:K
for n = 1:N
resultant(:,counter) = A + B(:,k) + C(:,n);
counter = counter+1;
end
end
% finding the minimum value:
[minimumValue,ind] = min(resultant(:))
and from the start of the answer you know that you can do this:
[r,c] = ind2sub(size(resultant),ind)
to get the row and column of minimumValue in resultant. So, in the same way you can do:
[Ccol,Bcol] = ind2sub([N,K],c)
where Bcol and Ccol is the column in B and C, respectively, so that:
minimumValue == A(r) + B(r,Bcol) + C(r,Ccol)
To see how it's working imagine that the loop above fills a matrix M with the value of counter, and M has a size of N-by-K. Because we fill M with a linear index, it will be filled in a column-major way, so the row will correspond to the n iterator, and the column will correspond to the k iterator. Now c corresponds to the counter where we got the minimum value, and the row and column of counter in M tells us the columns in B and C, so we can use ind2sub again to get the subscripts of the position of counter. Off course, we don't really need to create M, because the values within it are just the linear indices themselves.

Vectorize MATLAB code

Let's say we have three m-by-n matrices of equal size: A, B, C.
Every column in C represents a time series.
A is the running maximum (over a fixed window length) of each time series in C.
B is the running minimum (over a fixed window length) of each time series in C.
Is there a way to determine T in a vectorized way?
[nrows, ncols] = size(A);
T = zeros(nrows, ncols);
for row = 2:nrows %loop over the rows (except row #1).
for col = 1:ncols %loop over the columns.
if C(row, col) > A(row-1, col)
T(row, col) = 1;
elseif C(row, col) < B(row-1, col)
T(row, col) = -1;
else
T(row, col) = T(row-1, col);
end
end
end
This is what I've come up with so far:
T = zeros(m, n);
T(C > circshift(A,1)) = 1;
T(C < circshift(B,1)) = -1;
Well, the trouble was the dependency with the ELSE part of the conditional statement. So, after a long mental work-out, here's a way I summed up to vectorize the hell-outta everything.
Now, this approach is based on mapping. We get column-wise runs or islands of 1s corresponding to the 2D mask for the ELSE part and assign them the same tags. Then, we go to the start-1 along each column of each such run and store that value. Finally, indexing into each such start-1 with those tagged numbers, which would work as mapping indices would give us all the elements that are to be set in the new output.
Here's the implementation to fulfill all those aspirations -
%// Store sizes
[m1,n1] = size(A);
%// Masks corresponding to three conditions
mask1 = C(2:nrows,:) > A(1:nrows-1,:);
mask2 = C(2:nrows,:) < B(1:nrows-1,:);
mask3 = ~(mask1 | mask2);
%// All but mask3 set values as output
out = [zeros(1,n1) ; mask1 + (-1*(~mask1 & mask2))];
%// Proceed if any element in mask3 is set
if any(mask3(:))
%// Row vectors for appending onto matrices for matching up sizes
mask_appd = false(1,n1);
row_appd = zeros(1,n1);
%// Get 2D mapped indices
df = diff([mask_appd ; mask3],[],1)==1;
cdf = cumsum(df,1);
offset = cumsum([0 max(cdf(:,1:end-1),[],1)]);
map_idx = bsxfun(#plus,cdf,offset);
map_idx(map_idx==0) = 1;
%// Extract the values to be used for setting into new places
A1 = out([df ; false(1,n1)]);
%// Map with the indices obtained earlier and set at places from mask3
newval = [row_appd ; A1(map_idx)];
mask3_appd = [mask_appd ; mask3];
out(mask3_appd) = newval(mask3_appd);
end
Doing this vectorized is rather difficult because the current row's output depends on the previous row's output. Doing vectorized operations usually means that each element should stand out on its own using some relationship that is independent of the other elements that surround it.
I don't have any input on how you would achieve this without a for loop but I can help you reduce your operations down to one instead of two. You can do the assignment vectorized per row, but I can't see how you'd do it all in one shot.
As such, try something like this instead:
[nrows, ncols] = size(A);
T = zeros(nrows, ncols);
for row = 2:nrows
out = T(row-1,:); %// Change - Make a copy of the previous row
out(C(row,:) > A(row-1,:)) = 1; %// Set those elements of C
%// in the current row that are larger
%// than the previous row of A to 1
out(C(row,:) < B(row-1,:)) = -1; %// Same logic but for B now and it's
%// less than and the value is -1 instead
T(row,:) = out; %// Assign to the output
end
I'm currently figuring out how to do this with any loops whatsoever. I'll keep you posted.

Generate random 2D matrix with unique rows in octave/matlab

I want to generate a 2D matrix(1000x3) with random values in the range of 1 to 10 in octave. Using randi(10,1000,3) will generate a matrix with repeated row values. But I want to generate unique(unrepeated) rows. Is there any way that, I can do that?
You can do that easily by getting the cartesian product to create all possibilities and shuffle the array as follows. To create the cartesian product, you will need my custom cartprod.m function that generates a cartesian product.
C = cartprod(1:10,1:10,1:10);
The following line then shuffles the cartesian product C.
S = C(randperm( size(C,1) ),:);
Notes:
Every row in S is unique and you can verify that size( unique( S ) ) == 1000.
I should note that this code works on Matlab 2015a. I haven't tested it in Octave, which is what OP seems to be using. I've been told the syntax is pretty much identical though.
You can generate all possible three-item sequences drawn from 1 through 10, with replacement, using the following function:
function result = nchoosek_replacement(n, k)
%// Edge cases: just return an empty matrix
if k < 1 || n < 1 || k >= n
result = [];
return
end
reps = n^(k-1);
result = zeros(n^k, k);
cur_col = repmat(1:n, reps, 1);
result(:,1) = cur_col(:);
%// Base case: when k is 1, just return the
%// fully populated matrix 'result'
if k == 1
return
end
%// Recursively generate a matrix that will
%// be used to populate columns 2:end
next = nchoosek_replacement(n, k-1);
%// Repeatedly use the matrix above to
%// populate the matrix 'result'
for i = 1:n
cur_range = (i-1)*reps+1:i*reps;
result(cur_range, 2:end) = next;
end
end
With this function defined, you can now generate all possible sequences. In this case there are exactly 1000 so they could simply be shuffled with randperm. A more general approach is to sample from them with randsample, which would also allow for smaller matrices if desired:
max_value = 10;
row_size = 3;
num_rows = 1000;
possible = nchoosek_replacement(max_value, row_size);
indices = randsample(size(possible, 1), num_rows);
data = possible(indices, :);