Generate a random sparse matrix with N non-zero-elements - matlab

I've written a function that generates a sparse matrix of size nxd
and puts in each column 2 non-zero values.
function [M] = generateSparse(n,d)
M = sparse(d,n);
sz = size(M);
nnzs = 2;
val = ceil(rand(nnzs,n));
inds = zeros(nnzs,d);
for i=1:n
ind = randperm(d,nnzs);
inds(:,i) = ind;
end
points = (1:n);
nnzInds = zeros(nnzs,d);
for i=1:nnzs
nnzInd = sub2ind(sz, inds(i,:), points);
nnzInds(i,:) = nnzInd;
end
M(nnzInds) = val;
end
However, I'd like to be able to give the function another parameter num-nnz which will make it choose randomly num-nnz cells and put there 1.
I can't use sprand as it requires density and I need the number of non-zero entries to be in-dependable from the matrix size. And giving a density is basically dependable of the matrix size.
I am a bit confused on how to pick the indices and fill them... I did with a loop which is extremely costly and would appreciate help.
EDIT:
Everything has to be sparse. A big enough matrix will crash in memory if I don't do it in a sparse way.

You seem close!
You could pick num_nnz random (unique) integers between 1 and the number of elements in the matrix, then assign the value 1 to the indices in those elements.
To pick the random unique integers, use randperm. To get the number of elements in the matrix use numel.
M = sparse(d, n); % create dxn sparse matrix
num_nnz = 10; % number of non-zero elements
idx = randperm(numel(M), num_nnz); % get unique random indices
M(idx) = 1; % Assign 1 to those indices

Related

Optimal way of doing iterative assembly of sparse matrices in Matlab?

My code needs to in a loop modify the elements of a sparse matrix. Doing this matlab warns me that This sparse indexing expression is likely to be slow. I am preallocating the sparse arrays using the Spalloc function but am still getting this warning. What is the optimal approach for assembling of sparse matrices? This is what I am currently doing.
K=spalloc(n,n,100); f=spalloc(n,1,100);
for i = 1:Nel
[Ke,fe] = myFunction(Ex(i),Ey(i));
inds = data(i,2:end);
K(inds,inds) = K(inds,inds) + Ke;
f(inds) = f(inds)+fe;
end
the indices in inds may be appear several times in the loop, meaning an element in K or f may receive multiple contributions. The last two lines within the loop are where I'm getting warnings.
A common approach is to use the triplet form of the sparse constructor:
S = sparse(i,j,v,m,n)
i and j are row and column index vectors and v is the corresponding data vector. Values corresponding to repeated indices are summed like your code does. So you could instead build up row and column index vectors along with a data vector and then just call sparse with those.
For example something like:
nout = Nel*(size(data,2)-1);
% Data vector for K
Kdata = zeros(1,nout);
% Data vector for f
fdata = zeros(1,nout);
% Index vector for K and f
sparseIdxvec = ones(1,nout);
outIdx = 1;
for i = 1:Nel
[Ke,fe] = myFunction(Ex(i),Ey(i));
inds = data(i,2:end);
nidx = numel(inds);
outIdxvec = outIdx:outIdx+nidx-1;
sparseIdxvec(outIdxvec) = inds;
Kdata(outIdxvec) = Ke;
fdata(outIdxvec) = fe;
outIdx = outIdx + nidx;
end
K = sparse(sparseIdxvec,sparseIdxvec,Kdata,n,n);
f = sparse(sparseIdxvec,1,fdata,n,1);
Depending on your application, that may or may not actually be faster.

Accelerating the index in huge sparse matrix during loop in MATLAB

I need to construct a huge sparse matrix in iterations. The code is as follow:
function Huge_Matrix = Create_Huge_Matrix(len, Weight, Index)
k = size(Weight,1);
Huge_Matrix = spalloc(len, len,floor(len*k));
parfor i = 1:len
temp = sparse(1,len);
ind = Index(:,i);
temp(ind) = Weight(:,i);
Huge_Matrix(i,:) = temp;
end
Huge_Matrix = Huge_Matrix + spdiags(-k*ones(len,1),0,len,len);
end
As is shown, len is size of the height * weight of the input image, for 200*200 image, the len is 40000! And I am assigning the Weight into this huge matrix according the position stored in Index. Even though I use parfor to accerlate the loop, the speed is very slow.
I also try to create full matrix at first, it seems that the code can becomes faster, but memory is limited. Is there any other way to speed up the code? Thanks in advance!
As #CrisLuengo says in the comments, there is probably a better way to do what you're trying to do than to create a 40kx40k matrix, but if you have to create a large sparse matrix, it's better to let MATLAB do it for you.
The sparse function has a signature that takes lists of rows, columns and the corresponding values for the nonzero elements of the matrix:
S = sparse(i,j,v) generates a sparse matrix S from the triplets i, j, and v such that S(i(k),j(k)) = v(k). The max(i)-by-max(j) output matrix has space allotted for length(v) nonzero elements. sparse adds together elements in v that have duplicate subscripts in i and j.
If the inputs i, j, and v are vectors or matrices, they must have the same number of elements. Alternatively, the argument v and/or one of the arguments i or j can be scalars.
So, we can simply pass Index as the row indices and Weight as the values, so all we need is an array of column indices the same size as Index:
col_idx = repmat(1:len, k, 1);
Huge_Matrix = sparse(Index, col_idx, Weight, len, len);
(The last two parameters specify the size of the sparse matrix.)
The next step is to create another large sparse matrix and add it to the first. That seems kind of wasteful, so why not just add those entries to the existing arrays before creating the matrix?
Here's the final function:
function Huge_Matrix = Create_Huge_Matrix(len, Weight, Index)
k = size(Weight,1);
% add diagonal indices/weights to arrays
% this avoids creating second huge sparse array
Index(end+1, :) = [1:len];
Weight(end+1, :) = -k*ones(1,len);
% create array of column numbers corresponding to each Index
% make k+1 rows because we've added the diagonal
col_idx = repmat(1:len, k+1, 1);
% let sparse do the work
Huge_Matrix = sparse(Index, col_idx, Weight, len, len);
end

Create a submatrix using random columns and loop

I have a 102-by-102 matrix. I want to select square sub-matrices of orders from 2 up to 8 using random column numbers. Here is what I have done so far.
matt is the the original matrix of size 102-by-102.
ittr = 30
cols = 3;
for i = 1:ittr
rr = randi([2,102], cols,1);
mattsub = matt([rr(1) rr(2) rr(3)], [rr(1) rr(2) rr(3)]);
end
I have to extract matrices of different orders from 2 to 8. Using the above code I would have to change the mattsub line every time I change cols. I believe it is possible to do with another loop inside but cannot figure out how. How can I do this?
There is no need to extract elements of a vector and concatenate them, just use the vector to index a matrix.
Instead of :
mattsub = matt([rr(1) rr(2) rr(3)], [rr(1) rr(2) rr(3)]);
Use this:
mattsub = matt(rr, rr);
Defining a set of random sizes is pretty easy using the randi function. Once this is done, they can be projected along your iterations number N using arrayfun. Within the iterations, the randperm and sort functions can be used in order to build the random indexers to the original matrix M.
Here is the full code:
% Define the starting parameters...
M = rand(102);
N = 30;
% Retrieve the matrix rows and columns...
M_rows = size(M,1);
M_cols = size(M,2);
% Create a vector of random sizes between 2 and 8...
sizes = randi(7,N,1) + 1;
% Generate the random submatrices and insert them into a vector of cells...
subs = arrayfun(#(x)M(sort(randperm(M_rows,x)),sort(randperm(M_cols,x))),sizes,'UniformOutput',false);
This can work on any type of matrix, even non-squared ones.
You don't need another loop, one is enough. If you use randi to get a random integer as size of your submatrix, and then use those to get random column and row indices you can easily get a random submatrix. Do note that the ouput is a cell, as the submatrices won't all be of the same size.
N=102; % Or substitute with some size function
matt = rand(N); % Initial matrix, use your own
itr = 30; % Number of iterations
mattsub = cell(itr,1); % Cell for non-uniform output
for ii = 1:itr
X = randi(7)+1; % Get random integer between 2 and 7
colr = randi(N-X); % Random column
rowr = randi(N-X); % random row
mattsub{ii} = matt(rowr:(rowr+X-1),colr:(colr+X-1));
end

Find the product of all entries of vector x

Here is what I am trying to do:
Let x be a vector with n entries x1,x2,...xn. Write a mat-lab program which computes the vector p with entries defined by
pk = X1*X2....Xk-1*Xk+1...Xn.
for each k =1,2,...n.
pk is the product of all the entries of x except xk. (use prod command of compute the product of all the entries, then divide by xk). Take the appropriate special action if either one of more the entries of x is zero. Using vectors throughout and no 'for' loop.
I spent too much time to figure out this problem. I still could not get it. Please help!
Brute force:
n = numel(x);
X = repmat(x(:),1,n); %// put vector in column form and repeat
X(1:n+1:end) = 1; %// make diagonal 1
result = prod(X); %// product of each column
Saving computations:
ind = find(x==0);
if numel(ind)>1 %// result is all zeros
result = zeros(size(x));
elseif numel(ind)==1 %// result is all zeros except at one entry
result = zeros(size(x));
result(ind) = prod(nonzeros(x));
else %// compute product of all elements and divide by each element
result = prod(x)./x;
end

Generating a matrix with a given number of 1s in random places

I am trying to create a connectivity matrix for a graph with N nodes. The connectivity rules state that it should have 1000 randomly assigned one way connections (nodes cannot be connected to themselves).
What I want to do is to generate a matrix NxN with mostly zeroes and 1000 ones in random places, but not on the main diagonal.
I really don't have any ideas on how to achieve this. I thought about generating a matrix of random numbers between 0 and N/1000 and then making those above (N-1)/1000 to be one and the rest 0, but this isn't very precise (I may get more or less than 1000) and I don't know what to do about the diagonal.
What about this. Find the indices of non-diagonal elements. Choose some of those at random, and then populate those indices with ones:
nn = 10; % Size of matrix
nr = 20; % number of random connections
ident = eye(nn);
nd_idx = find(~ident); % Indices of non-diag elements
con = randperm(numel(nd_idx), nr); % Pick random elements
m = zeros(nn);
m( nd_idx(con) ) = 1;
If you want to get a matrix with exactly 1000 randomly located true values, my suggestion is to create a random matrix, and use the lowest or highest 1000 elements. To remove the diagonal, use eye(). So, something like this
N = 5000;
nNodes = 1000;
a = rand (N);
a(eye (N)) = 2;
threshold = sort (a(:))(nNodes);
b = false (N);
b(a >= threshold) = true;
I think Matlab hasn't implemented indexing of variable outputs yet, that's still only available in Octave. If that's the case, you will need to use a temporary variable to hold the sorted array which can take some memory for large matrices.
threshold = sort (a(:));
threshold = threshold(nNodes);
Generate random matrix A
Round items
Generate matrix of 1s with 0s on main diagonal B (you can create matrix of ones than substract matrix with 1s on main diagonal from it)
Multply A by B
#!/usr/bin/python
import sys
from random import randint
if len(sys.argv)!=3:
sys.exit("usage is :"+sys.argv[0]+" matrix-size num-of-connections")
matrixSize = int(sys.argv[1])
numOfConnections = int(sys.argv[2])
i = 0
while (i < numOfConnections):
a = randint(1, matrixSize)
b = randint(1, matrixSize)
if (a==b):
continue
i+=1
print "connection from %d to %d"%(a,b)