I have a 4 Input and 3 Output Neural network trained by particle swarm optimization (PSO) with Mean square error (MSE) as the fitness function using the IRIS Database provided by MATLAB. The fitness function is evaluated 50 times. The experiment is to classify features. I have a few doubts
(1) Does the PSO iterations/generations = number of times the fitness function is evaluated?
(2) In many papers I have seen the training curve of MSE vs generations being plot. In the picture, the graph (a) on left side is a model similar to NN. It is a 4 input-0 hidden layer-3 output cognitive map. And graph (b) is a NN trained by the same PSO. The purpose of this paper was to show the effectiveness of the new model in (a) over NN.
But they mention that the experiment is conducted say Cycles = 100 times with Generations =300. In that case, the Training curve for (a) and (b) should have been MSE vs Cycles and not MSE vs PSO generations ? For ex, Cycle1 : PSO iteration 1-50 --> Result(Weights_1,Bias_1, MSE_1, Classification Rate_1). Cycle2: PSO iteration 1- 50 -->Result(Weights_2,Bias_2, MSE_2, Classification Rate_2) and so on for 100 Cycles. How come the X axis in (a),(b) is different and what do they mean?
(3) Lastly, for every independent run of the program (Running the m file several times independently, through the console) , I never get the same classification rate (CR) or the same set of weights. Concretely, when I first run the program I get W (Weights) values and CR =100%. When I again run the Matlab code program, I may get CR = 50% and another set of weights!! As shown below for an example,
%Run1 (PSO generaions 1-50)
>>PSO_NN.m
Correlation =
0
Classification rate = 25
FinalWeightsBias =
-0.1156 0.2487 2.2868 0.4460 0.3013 2.5761
%Run2 (PSO generaions 1-50)
>>PSO_NN.m
Correlation =
1
Classification rate = 100
%Run3 (PSO generaions 1-50)
>>PSO_NN.m
Correlation =
-0.1260
Classification rate = 37.5
FinalWeightsBias =
-0.1726 0.3468 0.6298 -0.0373 0.2954 -0.3254
What should be the correct method? So, which weight set should I finally take and how do I say that the network has been trained? I am aware that evolutionary algorithms due to their randomness will never give the same answer, but then how do I ensure that the network has been trained?
Shall be obliged for clarification.
As in most machine learning methods, the number of iterations in PSO is the number of times the solution is updated. In the case of PSO, this is the number of update rounds over all particles. The cost function here is evaluated after every particle is updated, so more than the number of iterations. Approximately, (# cost function calls) = (# iterations) * (# particles).
The graphs here are comparing different classifiers, fuzzy cognitive maps for graph (a) and a neural network for graph (b). So the X-axis displays the relevant measures of learning iterations for each.
Every time you run your NN you initialize it with different random values, so the results are never the same. The fact that the results vary greatly from one run to the next means you have a convergence problem. The first thing to do in this case is to try running more iterations. In general convergence is a rather complicated issue and the solutions vary greatly with applications (and read carefully through the answer and comments Isaac gave you on your other question). If your problem persists after increasing the number of iterations, you can post it as a new question, providing a sample of your data and the actual code you use to construct and train the network.
Related
I'm currently working through the SciML tutorials workshop exercises for the Julia language (https://tutorials.sciml.ai/html/exercises/01-workshop_exercises.html). Specifically, I'm stuck on exercise 6 part 3, which involves training a neural network to approximate the system of equations
function lotka_volterra(du,u,p,t)
x, y = u
α, β, δ, γ = p
du[1] = dx = α*x - β*x*y
du[2] = dy = -δ*y + γ*x*y
end
The goal is to replace the equation for du[2] with a neural network: du[2] = NN(u, p)
where NN is a neural net with parameters p and inputs u.
I have a set of sample data that the network should try to match. The loss function is the squared difference between the network model's output and that sample data.
I defined my network with
NN = Chain(Dense(2,30), Dense(30, 1)). I can get Flux.train! to run, but the problem is that sometimes the initial parameters for the neural network result in a loss on the order of 10^20 and so training never converges. My best try got the loss down from about 2000 initially to about 20 using the ADAM optimizer over about 1000 iterations, but I can't seem to do any better.
How can I make sure my network is consistently trainable, and is there a way to get better convergence?
How can I make sure my network is consistently trainable, and is there a way to get better convergence?
See the FAQ page on techniques for improving convergence. In a nutshell, the single shooting approach of most ML papers is very unstable and does not work on most practical problems, but there are a litany of techniques to help out. One of the best ones is multiple shooting, which optimizes only short bursts (in parallel) along the time series.
But training on a small interval and growing the interval works, also using more stable optimizers (BFGS) can work. You can also weigh the loss function so that earlier times mean more. Lastly, you can minibatch in a way similar to multiple shooting, i.e. start from a data point and only solve to the next (in fact, if you actually look at the original neural ODE paper NumPy code, they do not do the algorithm as explained but instead do this form of sampling to stabilize the spiral ODE training).
I am trying to classify human activities in videos(six classes and almost 100 videos per class, 6*100=600 videos). I am using 3D SIFT(both xy and t scale=1) from UCF.
for f= 1:20
f
offset = 0;
c=strcat('running',num2str(f),'.mat');
load(c)
pix=video3Dm;
% Generate descriptors at locations given by subs matrix
for i=1:100
reRun = 1;
while reRun == 1
loc = subs(i+offset,:);
fprintf(1,'Calculating keypoint at location (%d, %d, %d)\n',loc);
% Create a 3DSIFT descriptor at the given location
[keys{i} reRun] = Create_Descriptor(pix,1,1,loc(1),loc(2),loc(3));
if reRun == 1
offset = offset + 1;
end
end
end
fprintf(1,'\nFinished...\n%d points thrown out do to poor descriptive ability.\n',offset);
for t1=1:20
des(t1+((f-1)*100),:)=keys{1,t1}.ivec;
end
f
end
My approach is to first get 50 descriptors(of 640 dimension) for one video, and then perform bag of words with all descriptors(on 50*600= 30000 descriptors). After performing Kmeans(with 1000 k value)
idx1000=kmeans(double(total_des),1000);
I am getting 30k of length index vector. Then I am creating histogram signature of each video based on their index values in clusters. Then perform svmtrain(sum in matlab) on signetures(dim-600*1000).
Some potential problems-
1-I am generating random 300 points in 3D to calculate 50 descriptors on any 50 points from those points 300 points.
2- xy, and time scale values, by default they are "1".
3-Cluster numbers, I am not sure that k=1000 is enough for 30000x640 data.
4-svmtrain, I am using this matlab library.
NOTE: Everything is on MATLAB.
Your basic setup seems correct especially given that you are getting 85-95% accuracy. Now, it's just a matter of tuning your procedure. Unfortunately, there is no way to do this other than testing a variety of parameters examining the results and repeating. I going to break this answer into two parts. Advice about bag of words features, and advice about SVM classifiers.
Tuning Bag of Words Features
You are using 50 3D SIFT Features per video from randomly selected points with a vocabulary of 1000 visual words. As you've already mentioned, the size of the vocabulary is one parameter you can adjust. So is the number of descriptors per video.
Let's say that each video is 60 frames long, (at 30 fps only 2 sec, but let's assume you are sampling at 1fps for a 1 minute video). That means you are capturing less than one descriptor per frame. That seems very low to me even with 3D descriptors especially if the locations are randomly chosen.
I would manually examine the points for which you are generating features. Do they appear be well distributed in both space and time? Are you capturing too much background? Ask yourself, would I be able to distinguish between actions given these features?
If you find that many of the selected points are uninformative, increasing the number of points may help. The kmeans clustering can make a few groups for uninformative outliers, and more points means you hopefully capture a few more informative points. You can also try other methods for selecting points. For example, you could use corner points.
You can also manually examine the points that are clustered together. What sorts of structures do the groups have in common? Are the clusters too mixed? That's usually a sign that you need a larger vocabulary.
Tuning SVMs
Using the Matlab SVM implementation or the Libsvm implementation should not make a difference. They are both the same method and have similar tuning options.
First off, you should really be using cross-validation to tune the SVM to avoid overfitting on your test set.
The most powerful parameter for the SVM is the kernel choice. In Matlab, there are five built in kernel options, and you can also define your own. The kernels also have parameters of their own. For example, the gaussian kernel has a scaling factor, sigma. Typically, you start off with a simple kernel and compare to more complex kernels. For example, start with linear, then test quadratic, cubic and gaussian. To compare, you can simply look at your mean cross-validation accuracy.
At this point, the last option is to look at individual instances that are misclassified and try to identify reasons that they may be more difficult than others. Are there commonalities such as occlusion? Also look directly at the visual words that were selected for these instances. You may find something you overlooked when you were tuning your features.
Good luck!
I used ntstool to create NAR (nonlinear Autoregressive) net object, by training on a 1x1247 input vector. (daily stock price for 6 years)
I have finished all the steps and saved the resulting net object to workspace.
Now I am clueless on how to use this object to predict the y(t) for example t = 2000, (I trained the model for t = 1:1247)
In some other threads, people recommended to use sim(net, t) function - however this will give me the same result for any value of t. (same with net(t) function)
I am not familiar with the specific neural net commands, but I think you are approaching this problem in the wrong way. Typically you want to model the evolution in time. You do this by specifying a certain window, say 3 months.
What you are training now is a single input vector, which has no information about evolution in time. The reason you always get the same prediction is because you only used a single point for training (even though it is 1247 dimensional, it is still 1 point).
You probably want to make input vectors of this nature (for simplicity, assume you are working with months):
[month1 month2; month2 month 3; month3 month4]
This example contains 2 training points with the evolution of 3 months. Note that they overlap.
Use the Network
After the network is trained and validated, the network object can be used to calculate the network response to any input. For example, if you want to find the network response to the fifth input vector in the building data set, you can use the following
a = net(houseInputs(:,5))
a =
34.3922
If you try this command, your output might be different, depending on the state of your random number generator when the network was initialized. Below, the network object is called to calculate the outputs for a concurrent set of all the input vectors in the housing data set. This is the batch mode form of simulation, in which all the input vectors are placed in one matrix. This is much more efficient than presenting the vectors one at a time.
a = net(houseInputs);
Each time a neural network is trained, can result in a different solution due to different initial weight and bias values and different divisions of data into training, validation, and test sets. As a result, different neural networks trained on the same problem can give different outputs for the same input. To ensure that a neural network of good accuracy has been found, retrain several times.
There are several other techniques for improving upon initial solutions if higher accuracy is desired. For more information, see Improve Neural Network Generalization and Avoid Overfitting.
strong text
I am new to using Matlab and am trying to follow the example in the Bioinformatics Toolbox documentation (SVM Classification with Cross Validation) to handle a classification problem.
However, I am not able to understand Step 9, which says:
Set up a function that takes an input z=[rbf_sigma,boxconstraint], and returns the cross-validation value of exp(z).
The reason to take exp(z) is twofold:
rbf_sigma and boxconstraint must be positive.
You should look at points spaced approximately exponentially apart.
This function handle computes the cross validation at parameters
exp([rbf_sigma,boxconstraint]):
minfn = #(z)crossval('mcr',cdata,grp,'Predfun', ...
#(xtrain,ytrain,xtest)crossfun(xtrain,ytrain,...
xtest,exp(z(1)),exp(z(2))),'partition',c);
What is the function that I should be implementing here? Is it exp or minfn? I will appreciate if you can give me the code for this section. Thanks.
I will like to know what does it mean when it says exp([rbf_sigma,boxconstraint])
rbf_sigma: The svm is using a gaussian kernel, the rbf_sigma set the standard deviation (~size) of the kernel. To understand how kernels work, the SVM is putting the kernel around every sample (so that you have a gaussian around every sample). Then the kernels are added up (sumed) for the samples of each category/type. At each point the type which sum is higher would be the "winner". For example if type A has a higher sum of these kernels at point X, then if you have a new datum to classify in point X, it will be classified as type A. (there are other configuration parameters that may change the actual threshold where a category is selected over another)
Fig. Analyze this figure from the webpage you gave us. You can see how by adding up the gaussian kernels on the red samples "sumA", and on the green samples "sumB"; it is logical that sumA>sumB in the center part of the figure. It is also logical that sumB>sumA in the outer part of the image.
boxconstraint: it is a cost/penalty over miss-classified data. During the training stage of the classifier, where you use the training data to adjust the SVM parameters, the training algorithm is using an error function to decide how to optimize the SVM parameters in an iterative fashion. The cost for a miss-classified sample is proportional to how far it is from the boundary where it would have been classified correctly. In the figure that I am attaching the boundary is the inner blue circumference.
Taking into account BGreene indications and from what I understand of the tutorial:
In the tutorial they advice to try values for rbf_sigma and boxconstraint that are exponentially apart. This means that you should compare values like {0.2, 2, 20, ...} (note that this is {2*10^(i-2), i=1,2,3,...}), and NOT like {0.2, 0.3, 0.4, 0.5} (which would be linearly apart). They advice this to try a wide range of values first. You can further optimize later FROM the first optimum that you obtained before.
The command "[searchmin fval] = fminsearch(minfn,randn(2,1),opts)" will give you back the optimum values for rbf_sigma and boxconstraint. Probably you have to use exp(z) because it affects how fminsearch increments the values of z(1) and z(2) during the search for the optimum value. I suppose that when you put exp(z(1)) in the definition of #minfn, then fminsearch will take 'exponentially' big steps.
In machine learning, always try to understand that there are three subsets in your data: training data, cross-validation data, and test data. The training set is used to optimize the parameters of the SVM classifier for EACH value of rbf_sigma and boxconstraint. Then the cross validation set is used to select the optimum value of the parameters rbf_sigma and boxconstraint. And finally the test data is used to obtain an idea of the performance of your classifier (the efficiency of the classifier is determined upon the test set).
So, if you start with 10000 samples you may divide the data for example as training(50%), cross-validation(25%), test(25%). So that you will sample randomly 5000 samples for the training set, then 2500 samples from the 5000 remaining samples for the cross-validation set, and the rest of samples (that is 2500) would be separated for the test set.
I hope that I could clarify your doubts. By the way, if you are interested in the optimization of the parameters of classifiers and machine learning algorithms I strongly suggest that you follow this free course -> www.ml-class.org (it is awesome, really).
You need to implement a function called crossfun (see example).
The function handle minfn is passed to fminsearch to be minimized.
exp([rbf_sigma,boxconstraint]) is the quantity being optimized to minimize classification error.
There are a number of functions nested within this function handle:
- crossval is producing the classification error based on cross validation using partition c
- crossfun - classifies data using an SVM
- fminsearch - optimizes SVM hyperparameters to minimize classification error
Hope this helps
I have to write a classificator (gaussian mixture model) that I use for human action recognition.
I have 4 dataset of video. I choose 3 of them as training set and 1 of them as testing set.
Before I apply the gm model on the training set I run the pca on it.
pca_coeff=princomp(trainig_data);
score = training_data * pca_coeff;
training_data = score(:,1:min(size(score,2),numDimension));
During the testing step what should I do? Should I execute a new princomp on testing data
new_pca_coeff=princomp(testing_data);
score = testing_data * new_pca_coeff;
testing_data = score(:,1:min(size(score,2),numDimension));
or I should use the pca_coeff that I compute for the training data?
score = testing_data * pca_coeff;
testing_data = score(:,1:min(size(score,2),numDimension));
The classifier is being trained on data in the space defined by the principle components of the training data. It doesn't make sense to evaluate it in a different space - therefore, you should apply the same transformation to testing data as you did to training data, so don't compute a different pca_coef.
Incidently, if your testing data is drawn independently from the same distribution as the training data, then for large enough training and test sets, the principle components should be approximately the same.
One method for choosing how many principle components to use involves examining the eigenvalues from the PCA decomposition. You can get these from the princomp function like this:
[pca_coeff score eigenvalues] = princomp(data);
The eigenvalues variable will then be an array where each element describes the amount of variance accounted for by the corresponding principle component. If you do:
plot(eigenvalues);
you should see that the first eigenvalue will be the largest, and they will rapidly decrease (this is called a "Scree Plot", and should look like this: http://www.ats.ucla.edu/stat/SPSS/output/spss_output_pca_5.gif, though your one may have up to 800 points instead of 12).
Principle components with small corresponding eigenvalues are unlikely to be useful, since the variance of the data in those dimensions is so small. Many people choose a threshold value, and then select all principle components where the eigenvalue is above that threshold. An informal way of picking the threshold is to look at the Scree plot and choose the threshold to be just after the line 'levels out' - in the image I linked earlier, a good value might be ~0.8, selecting 3 or 4 principle components.
IIRC, you could do something like:
proportion_of_variance = sum(eigenvalues(1:k)) ./ sum(eigenvalues);
to calculate "the proportion of variance described by the low dimensional data".
However, since you are using the principle components for a classification task, you can't really be sure that any particular number of PCs is optimal; the variance of a feature doesn't necessarily tell you anything about how useful it will be for classification. An alternative to choosing PCs with the Scree plot is just to try classification with various numbers of principle components and see what the best number is empirically.