OK, what I'm trying to do is fairy complicated, but I'll try to explain.
Let's say we want (at compile-time) all derivedMembers of class someClass. Then we'd simply do :
const string[] methods = [__traits(derivedMembers,someClass)];
Now, how could we get someClass from "someClass"? (yep, its string representation).
Let me explain a bit more what I'm trying to do :
I want to create an "intermediate" function which takes a function name as an argument (along with a params array) and calls the appropriate function from a list of available static methods in a specific (predefined) set of classes. Like execute("someFunc",["one","two","three"]);.
Here's the full (test) code :
class Math {
static string noArgs(string[] s) { writeln(s); return ""; }
static string withOneArg(string[] s) { writeln(s); return ""; }
static string withTwoArgs(string[] s) { writeln(s); return ""; }
}
string cases()
{
string ret = "";
const string[] methods = [__traits(derivedMembers,Math)];
foreach (string s; methods)
{
ret ~= "case \"" ~ s ~ "\": return Math."~s~"(params);";
}
return ret;
}
string execute(string what, string[] params)
{
switch (what)
{
mixin(cases());
default: break;
}
return "";
}
The trouble with the above code is that it only looks for methods in Math. How could I change it, in an elegant D-friendly way, so that it'll go through an array of classes like [Math,String,SomethingElse] -- it doesn't have to be variable (we need it at compile-time anyway)?
UPDATE:
Tried something along the lines of :
const string[] methods = [__traits(derivedMembers,mixin("Math")];
but it complains that Cannot interpret Math at compile time.
UPDATE 2:
Also, tried using Object.factory("Math") but it's still not working. (Perhaps I'm just creating an instance of the Math class?)
Let me rewrite this to show you some cool tricks:
import std.stdio;
class Math {
static string noArgs(string[] s) { writeln(s); return ""; }
static string withOneArg(string[] s) { writeln(s); return ""; }
static string withTwoArgs(string[] s) { writeln(s); return ""; }
}
class String {
static string oneArg(string[] s) { return null; }
}
string execute(string what, string[] params) {
import std.string;
auto parts = what.split(".");
auto className = parts[0];
auto methodName = parts[1];
import std.typetuple;
switch(className) {
default: assert(0, "unknown class");
foreach(possibleClass; TypeTuple!(Math, String)) {
case possibleClass.stringof:
switch(methodName) {
default: assert(0, "unknown method");
foreach(memberName; __traits(derivedMembers, possibleClass)) {
case memberName:
return __traits(getMember, possibleClass, memberName)(params);
break;
}
}
break;
}
}
assert(0);
}
void main() {
execute("Math.withOneArg", ["cool"]);
execute("String.oneArg", ["cool"]);
}
Notice that there are no mixin expressions used at all. Instead of getting an instance of the class from a string, I just made a TypeTuple of all the classes I wanted to use. This is preferable to mixin because then it is less likely to find name classes when used in different scopes; if possibleClasses were a compile-time parameter to execute from a different module, the list of classes would still work, whereas the list of strings would see undefined identifier errors because the library module doesn't import your user module.
Another mixin I removed was the one to generate the cases. This looks insane, but is allowed in D: if you have a compile-time foreach (that is, a foreach over a built-in tuple of some sort, e.g. TypeTuple, template argument lists, the results of __traits...) you can actually put case statements inside them!
So, all you have to do is write a regular switch statement on the run time variable you want to compare against, put the foreach inside it looping over the compile-time stuff you're searching for, case that_loop_var: and boom, you're in business.
Similarly, I used __traits(getMember) rather than a mixin string to call the method. This solution will help avoid name clashes and IMO is cleaner code. It can also potentially handle overloads, if wanted (with __traits(getOverloads) instead of __traits(getMember), you can loop over each one then and match the parameter types).
Finally, nesting switches inside other case statements is allowed. If you need to break out of an outer loop or switch and don't want ambiguity, you can label loops and switches and use break label_name_here; to specify which one you want to break from. Ditto for continue with nested loops.
BTW you could also automatically generate the wrapper functions that convert string[] to other types of arguments if you dove into the std.traits stuff. I wish my book was out already, I wrote about this at some length in there and don't feel like writing it all right now but if you look at std.traits.ParameterTypeTuple and ReturnType in the same module that will get you started if you wanna try it.
Related
I have this function, extract(), which takes a range and the name of a member, then attempts to create a wrapping range whose front() provides access only to the named member.
The problem lies in Range.front(), when R is of the form const(T)[]. The compiler indicates that the the function r.front() does not exist. I'm fairly certain there is something wrong with the interaction between the non-const R and the const r.front(), but I am not certain how to resolve it.
So, is my intuition correct? And in either case, what exactly is wrong, and how can I fix it?
auto extract (string member, R)(R range) {
import std.traits: hasMember;
import std.range: ElementType, isInputRange;
static assert(hasMember!(ElementType!R, member));
static assert(isInputRange!R);
struct Range {
R r;
bool empty ()() { return r.empty; }
void popFront ()() { r.popFront; }
ElementType!R front () { mixin("return r.front." ~ member ~ ";"); }
}
return Range(range);
}
It turns out that you need std.range.primitives.front() if you are going to work with an array, and since names bind as closely as possible, there is no name conflict (If R implements front() it gets called instead of the one from std.range).
However, for reasons I don't understand, you can't selectively import it. You have to import all of std.range.primitives.
In any case, given a struct S:
struct S {
string name;
}
And an array:
const(S)[] a = [S("A"), S("B")];
Calling test.extract!"name"() correctly returns ["A", "B"].
First. If you want to keep your implementation, you should to replace
import std.range: ElementType, isInputRange;
on
import std.range: ElementType, isInputRange, front;
and
ElementType!R front () { mixin("return r.front." ~ member ~ ";"); }
on
auto front () { mixin("return r.front." ~ member ~ ";"); }
But.
Your implementation is too complexity
It may be more simplify.
Just
auto extract1 (string member, R)(R range)
if((hasMember!(ElementType!R, member)) && isInputRange!R)
{
return range.map!("a." ~ member);
}
I am using dotnetrdf and trying to parse some triples with NTriplesParser. I have my own handler RobHandler in which I process each triple in turn.
public class RobHandler : BaseRdfHandler
{
protected override bool HandleTripleInternal(Triple t)
{
string predicateUrl = ((BaseUriNode)(t.Predicate)).Uri.AbsoluteUri;
string value = t.Object.ToString();
}
}
This works fine but I want to get the object minus the language. My objects look like "Lincoln"#en. I could obviously write some code to remove the #en bit, but I'd rather use some library code rather than my own that hard-coded strings like #en. To do this I think I need to create a LiteralNode but there doesn't seem to be a way to get from a string which is what I have (my variable value) to a LiteralNode.
How can I extract just the textual value from an object string?
Actually I think I have the answer myself:
if (t.Object.NodeType == NodeType.Literal)
{
var node = (ILiteralNode)t.Object;
}
How do I write a class that implements this TypeScript interface (and keeps the TypeScript compiler happy):
interface MyInterface {
(): string;
text2(content: string);
}
I saw this related answer:
How to make a class implement a call signature in Typescript?
But that only works if the interface only has the bare function signature. It doesn't work if you have additional members (such as function text2) to be implemented.
A class cannot implement everything that is available in a typescript interface. Two prime examples are callable signatures and index operations e.g. : Implement an indexible interface
The reason is that an interface is primarily designed to describe anything that JavaScript objects can do. Therefore it needs to be really robust. A TypeScript class however is designed to represent specifically the prototype inheritance in a more OO conventional / easy to understand / easy to type way.
You can still create an object that follows that interface:
interface MyInterface {
(): string;
text2(content: string);
}
var MyType = ((): MyInterface=>{
var x:any = function():string { // Notice the any
return "Some string"; // Dummy implementation
}
x.text2 = function(content:string){
console.log(content); // Dummy implementation
}
return x;
}
);
There's an easy and type-safe way to do this with ES6's Object.assign:
const foo: MyInterface = Object.assign(
// Callable signature implementation
() => 'hi',
{
// Additional properties
text2(content) { /* ... */ }
}
)
Intersection types, which I don't think were available in TypeScript when this question was originally asked and answered, are the secret sauce to getting the typing right.
Here's an elaboration on the accepted answer.
As far as I know, the only way to implement a call-signature is to use a function/method. To implement the remaining members, just define them on this function. This might seem strange to developers coming from C# or Java, but I think it's normal in JavaScript.
In JavaScript, this would be simple because you can just define the function and then add the members. However, TypeScript's type system doesn't allow this because, in this example, Function doesn't define a text2 member.
So to achieve the result you want, you need to bypass the type system while you define the members on the function, and then you can cast the result to the interface type:
//A closure is used here to encapsulate the temporary untyped variable, "result".
var implementation = (() => {
//"any" type specified to bypass type system for next statement.
//Defines the implementation of the call signature.
var result: any = () => "Hello";
//Defines the implementation of the other member.
result.text2 = (content: string) => { };
//Converts the temporary variable to the interface type.
return <MyInterface>result;
})(); //Invokes the closure to produce the implementation
Note that you don't need to use a closure. You could just declare your temporary variable in the same scope as the resulting interface implementation. Another option is to name the closure function to improve readability.
Here's what I think is a more realistic example:
interface TextRetriever {
(): string;
Replace(text: string);
}
function makeInMemoryTextRetriever(initialText: string) {
var currentText = initialText;
var instance: any = () => currentText;
instance.Replace = (newText: string) => currentText = newText;
return <TextRetriever>instance;
}
var inMemoryTextRetriever = makeInMemoryTextRetriever("Hello");
I'd like to be able to parametrize my exports not only with types (as in, generic exports), but also with values.
Something like:
class Greeter
{
readonly string _format;
public Greeter( string format ) { _format = format; }
public string Greet( string name ) { return string.Format( _format, name ); }
}
// ...
var e = new ExportProvider();
e.ExportParametrized<Greeter>( args: new[] { "Hi, {0}!" } );
e.ExportParametrized<Greeter>( args: new[] { "¡Hola, {0}!" } );
// And then:
[ImportMany] IEnumerable<Greeter> Greeters { get; set; }
foreach( var g in Greeters ) Console.WriteLine( g.Greet( "John" ) );
// Should print out:
// Hello, John!
// ¡Hola, John!
One might ask: why don't I simply export the value new Greeter( "Hello, {0}!" ) using ComposablePartExportProvider and CompositionBatch?
While this approach would work in this particular case, it has an important flaw: if the Greeter class had any imports of its own, they would not be satisfied.
The usual way I would go about this is to declare two classes - EnglishGreeter and SpanishGreeter, inherit them both from Greeter, and then provide the appropriate arguments in the call to base constructor.
But this doesn't work for two reasons:
This is a lot of noise to write. Not only do I have to type the whole shebang, I also have to come up with names for those classes, and it doesn't always make sense to have names. Not to mention the DRY principle. But even besides the noise...
Sometimes I don't know the parameters upfront. Say, for example, my greeting formats were coming from some kind of config file.
Here is another thought, to somewhat clarify what I'm looking for.
This problem is almost solved in the TypeCatalog. See, the TypeCatalog knows about the type and it calls the type's constructor to create the part on demand.
One can think of this process from another standpoint: the catalog has a factory function; using that function, it creates the part, then satisfies its non-prerequisite imports, and then returns the part back to the requestor.
Now, in the particular case of TypeCatalog, the factory function just happens to be the type's own constructor. If only I could hook in and replace the factory function with my own, but still leverage the rest of the machinery, that would be exactly what I'm looking for.
You can achieve this by using property exports. You could define a class specifically for those kinds of exports, and it will look like this:
class MyParameterizedExports
{
[Export(typeof(Greeter))]
private Greeter EnglishGreeter
{
get
{
Greeter g = new Greeter("Hi, {0}!");
container.SatisfyImportsOnce(g);
return g;
}
}
[Export(typeof(Greeter))]
private Greeter SpanishGreeter
{
get
{
Greeter g = new Greeter("¡Hola, {0}!");
container.SatisfyImportsOnce(g);
return g;
}
}
}
Here you export two separate Greeter instances without having to define a new class for each type of Greeter.
One advantage of lambda expressions is that you have to evaluate a function only when you need its result.
In the following (simple) example, the text function is only evaluated when a writer is present:
public static void PrintLine(Func<string> text, TextWriter writer)
{
if (writer != null)
{
writer.WriteLine(text());
}
}
Unfortunately, this makes using the code a little bit ugly. You cannot call it with a constant or variable like
PrintLine("Some text", Console.Out);
and have to call it this way:
PrintLine(() => "Some text", Console.Out);
The compiler is not able to "infer" a parameterless function from the passed constant. Are there any plans to improve this in future versions of C# or am I missing something?
UPDATE:
I just found a dirty hack myself:
public class F<T>
{
private readonly T value;
private readonly Func<T> func;
public F(T value) { this.value = value; }
public F(Func<T> func) {this.func = func; }
public static implicit operator F<T>(T value)
{
return new F<T>(value);
}
public static implicit operator F<T>(Func<T> func)
{
return new F<T>(func);
}
public T Eval()
{
return this.func != null ? this.func() : this.value;
}
}
Now i can just define the function as:
public static void PrintLine(F<string> text, TextWriter writer)
{
if (writer != null)
{
writer.WriteLine(text.Eval());
}
}
and call it both with a function or a value.
I doubt that C# will get this feature, but D has it. What you've outlined is a suitable way to implement lazy argument evaluation in C#, and probably compiles very similarly to lazy in D, and in more pure functional languages.
All things considered, the four extra characters, plus optional white space, are not an exceptionally large price to pay for clear overload resolution and expressiveness in what is becoming a multi-paradigm strong-typed language.
The compiler is very good at inferring types, it is not good at inferring intent. One of the tricky things about all the new syntactic sugar in C# 3 is that they can lead to confusion as to what exactly the compiler does with them.
Consider your example:
() => "SomeText"
The compiler sees this and understands that you intend to create an anonymous function that takes no parameters and returns a type of System.String. This is all inferred from the lambda expression you gave it. In reality your lambda gets compiled to this:
delegate {
return "SomeText";
};
and it is a delegate to this anonymous function that you are sending to PrintLine for execution.
It has always been important in the past but now with LINQ, lambdas, iterator blocks, automatically implemented properties, among other things it is of the utmost importance to use a tool like .NET Reflector to take a look at your code after it is compiled to see what really makes those features work.
Unfortunately, the ugly syntax is all you have in C#.
The "dirty hack" from the update does not work, because it does not delay the evaluation of string parameters: they get evaluated before being passed to operator F<T>(T value).
Compare PrintLine(() => string.Join(", ", names), myWriter) to PrintLine(string.Join(", ", names), myWriter) In the first case, the strings are joined only if they are printed; in the second case, the strings are joined no matter what: only the printing is conditional. In other words, the evaluation is not lazy at all.
Well those two statements are completely different. One is defining a function, while the other is a statement. Confusing the syntax would be much trickier.
() => "SomeText" //this is a function
"SomeText" //this is a string
You could use an overload:-
public static void PrintLine(string text, TextWriter writer)
{
PrintLine(() => text, writer);
}
You could write an extension method on String to glue it in. You should be able to write "Some text".PrintLine(Console.Out); and have it do the work for you.
Oddly enough, I did some playing with lazy evaluation of lambda expressions a few weeks back and blogged about it here.
To be honest I don't fully understand your problem, but your solutions seems a tad complicated to me.
I think a problem I solved using lambda call is similar, maybe you could use it as inspiration: I want to see if a key exists in a dictionary, if not, I would need to execute a (costly) load operation.
public static class DictionaryHelper
{
public static TValue GetValueOrLambdaDefault<TKey, TValue> (this IDictionary<TKey, TValue> dictionary, TKey key, Func<TValue> func)
{
if (dictionary.ContainsKey(key))
return dictionary[key];
else
return func.Invoke();
}
}
[TestClass]
public class DictionaryHelperTest
{
[TestMethod]
public void GetValueOrLambdaDefaultTest()
{
var dict = new Dictionary<int, string>();
try
{
var res1 = dict.GetValueOrLambdaDefault(1, () => LoadObject());
Assert.Fail("Exception should be thrown");
}
catch { /*Exception should be thrown*/ }
dict.Add(1, "");
try
{
var res1 = dict.GetValueOrLambdaDefault(1, () => LoadObject());
}
catch { Assert.Fail("Exception should not be thrown"); }
}
public static string LoadObject()
{
throw new Exception();
}
}