Accessing Matlab Struct Field with General Function - matlab

I'm trying to automate a process for getting information out of an array of structs.
I have the following code:
function [data] = extractData(struct,str)
data = {};
for i = 1:length(struct)
data{i} = struct(i).str;
end
The problem is that I want to provide the str value referring to a pre-determined field. In it's current form, it won't accept str and say "str is an unknown field."

The easiest way to do this would to use:
function data = extractData(struct)
str = fieldnames(struct);
data = {};
for i = 1:numel(str)
data{i} = struct.(str{i});
end
end
You may also want to consider a few different things here. First, you may want to change the name of your struct to a different name as was said above. Also you might want to look into cell arrays. Cell arrays can hold variables of different types and lengths and are easier you use.

Related

MATLAB: Pass part of structure field name to function

I need to pass a part of a structure's name into a function.
Examples of a available structs:
systems.system1.stats.equityCurve.relative.exFee
systems.system1.stats.equityCurve.relative.inFee
systems.system2.stats.equityCurve.relative.exFee
systems.system2.stats.equityCurve.relative.inFee
systems.system1.returns.aggregated.exFee
systems.system1.returns.aggregated.inFee
systems.system2.returns.aggregated.exFee
systems.system2.returns.aggregated.inFee
... This goes on...
Within a function, I loop through the structure as follows:
function mat = test(fNames)
feeString = {'exFee', 'inFee'};
sysNames = {'system1', 'system2'};
for n = 1 : 2
mat{n} = systems.(sysNames{n}).stats.equityCurve.relative.(feeString{n});
end
end
What I like to handle in a flexible way within the loop is the middle part, i.e. the part after systems.(sysNames{n}) and before .(feeString{n}) (compare examples).
I am now looking for a way to pass the middle part as an input argument fNames into the function. The loop should than contain something like
mat{n} = systems.(sysNames{n}).(fName).(feeString{n});
How about using a helper function such as
function rec_stru = recSA(stru, field_names)
if numel(field_names) == 1
rec_stru = stru.(field_names{1});
else
rec_stru = recSA(stru.(field_names{1}), field_names(2:end));
end
This function takes the intermediate field names as a cell array.
This would turn this statement:
mat{n} = systems.(sysNames{n}).stats.equityCurve.relative.(feeString{n});
into
mat{n} = recSA(systems.(sysNames{n}), {'stats', 'equityCurve', 'relative', feeString{n}});
The first part of the cell array could then be passed as an argument to the function.
This is one of those cases where matlab is a bit unhelpful in the documentation. There is a way to use the fieldnames function in matlab to get the list of all the fields and iterate over that using dynamic fields.
systems.system1.stats.equityCurve.relative.exFee='T'
systems.system1.stats.equityCurve.relative.inFee='E'
systems.system2.stats.equityCurve.relative.exFee='S'
systems.system2.stats.equityCurve.relative.inFee='T'
systems.system1.returns.aggregated.exFee='D'
systems.system1.returns.aggregated.inFee='A'
systems.system2.returns.aggregated.exFee='T'
systems.system2.returns.aggregated.inFee='A'
dynamicvariable=fieldnames(systems.system1)
This will return a cell matrix of the field names which you can use to iterate over.
systems.system1.(dynamicvariable{1})
ans =
equityCurve: [1x1 struct]
Ideally you would have your data structure fixed in such a way that you know how many levels of depth are in your data structure.

MATLAB: Loop through the values of a list from 'who' function

I have a long list of variables in my workspace.
First, I'm finding the potential variables I could be interested in using the who function. Next, I'd like to loop through this list to find the size of each variable, however who outputs only the name of the variables as a string.
How could I use this list to refer to the values of the variables, rather than just the name?
Thank you,
list = who('*time*')
list =
'time'
'time_1'
'time_2'
for i = 1:size(list,1);
len(i,1) = length(list(i))
end
len =
1
1
1
If you want details about the variables, you can use whos instead which will return a struct that contains (among other things) the dimensions (size) and storage size (bytes).
As far as getting the value, you could use eval but this is not recommended and you should instead consider using cell arrays or structs with dynamic field names rather than dynamic variable names.
S = whos('*time*');
for k = 1:numel(S)
disp(S(k).name)
disp(S(k).bytes)
disp(S(k).size)
% The number of elements
len(k) = prod(S(k).size);
% You CAN get the value this way (not recommended)
value = eval(S(k).name);
end
#Suever nicely explained the straightforward way to get this information. As I noted in a comment, I suggest that you take a step back, and don't generate those dynamically named variables to begin with.
You can access structs dynamically, without having to resort to the slow and unsafe eval:
timestruc.field = time;
timestruc.('field1') = time_1;
fname = 'field2';
timestruc.(fname) = time_2;
The above three assignments are all valid for a struct, and so you can address the fields of a single data struct by generating the field strings dynamically. The only constraint is that field names have to be valid variable names, so the first character of the field has to be a letter.
But here's a quick way out of the trap you got yourself into: save your workspace (well, the relevant part) in a .mat file, and read it back in. You can do this in a way that will give you a struct with fields that are exactly your variable names:
time = 1;
time_1 = 2;
time_2 = rand(4);
save('tmp.mat','time*'); % or just save('tmp.mat')
S = load('tmp.mat');
afterwards S will be a struct, each field will correspond to a variable you saved into 'tmp.mat':
>> S
S =
time: 1
time_1: 2
time_2: [4x4 double]
An example writing variables from workspace to csv files:
clear;
% Writing variables of myfile.mat to csv files
load('myfile.mat');
allvars = who;
for i=1:length(allvars)
varname = strjoin(allvars(i));
evalstr = strcat('csvwrite(', char(39), varname, '.csv', char(39), ', ', varname, ')');
eval(evalstr);
end

Using "who" variable list to open cell array

I am trying to cycle through a list of variables I have say 30+ and calculate the maximum and minimum value for each column in each variable. Save this in a new array and then export to excel.
My thoughts were to use the who function to create an array with the name of all variables which are present. Then cycling through each one using a for loop after working out the size of the array which was created. This works fine, however when I try and use the string to reference the array it does not work.
I will add in the code which I have written hopefully someone will be able to come up with an easy solution :).
variable_list = who
cell2 = input('What cell size do you want to look at? ');
STARTcell = input('What was the start cell size? ');
[num_variables, temp] = size(variable_list);
for va = 1:num_variables
variable = variable_list{va}
[max_value, max_index] = max(variable{cell2/STARTcell})
[min_value, min_index] = min(variable{cell2/STARTcell})
format_values{va} = vertcat(max_values, max_index, min_value, min_index);
end
The variables I am looking at are arrays which is why I use the cell2/STARTcell to reference them.
You need to use the eval() function to be able to get the value of a variable corresponding to a string. For example:
a = 1;
b = 2;
variable_list = who;
c = eval(variable_list{2});
results in c being 2. In your code, the following line needs to change from:
variable = variable_list{va}
to:
variable = eval(variable_list{va});
resulting in variable having the value of the variable indicated by the string variable_list{va}. If variable is of cell type, then you should be fine, otherwise you may have to revise the next two lines of code as well because it seems that you are trying to access the content of a cell.

Outputting data from for loop to .mat file using numbers in title MATLAB

I need to output .mat files for the below data. I need one file to have cell (1,1) to be Mean_RPM_list1, cell (2,1) to be Mean_RPM_list2 etc. And then I need another file to have cell(1,1) to be Mean_Torque_list1 to have cell(1,1).....and so on.
Can anybody shed any light on this for me?
Also if someone knows how to automate me calling the matrices A and B so I could have A = [Mean_rpm1:Mean_rpmMAX], that would also be very helpful.
TIA for any help.
A = [Mean_rpm1 Mean_rpm2 Mean_rpm3 Mean_rpm4 Mean_rpm5 Mean_rpm6 Mean_rpm7 Mean_rpm8 Mean_rpm9 Mean_rpm10 Mean_rpm11 Mean_rpm12];
B = [Mean_torque1 Mean_torque2 Mean_torque3 Mean_torque4 Mean_torque5 Mean_torque6 Mean_torque7 Mean_torque8 Mean_torque9 Mean_torque10 Mean_torque11 Mean_torque12];
plot(A,B,'*')
for i = 1:num_bins;
bin = first + ((i-1)/10);
eval(sprintf('Mean_RPM_list%0.f = A;',bin*10));
eval(sprintf('Mean_Torque_list%0.f = B;',bin*10));
end
First of all this is really bad idea to create a set of variables with names different by numbers. As you can see it's very difficult to deal with such variables, you always have to use eval (or other related) statements.
It's much easier to create a cell array Mean_rpm and access its elements as Mean_rpm{1}, etc.
If the vectors are numeric and have the same size you can also make a 2D/3D array. Then access as Mean_rpm(:,:,1) etc.
Next, to store a cell array to a mat-file you have to create this array in MATLAB. No options (at least for now) to do it by parts in a loop. (But you can do it for numeric vectors and matrices using matfile object.) So why do you need this intermediate Mean_RPM_list variable? Just do Mean_RPM_list{bin*10} = A in your loop.
For your first question, if you already have those variables you have to use eval in a loop. Something like
A = [];
for k=1:K
eval(sprintf('A{k} = [A, Mean_rpm%d];',k));
end
You can also get names for all similar variables and combine them.
varlist = who('Mean_rpm*');
A = cell(1,numel(varlist);
for k = 1:numel(varlist)
eval('A{k} = varlist{k};');
end
Here is one without loop using CELL2FUN:
A=cellfun(#(x)evalin('base',x),varlist,'UniformOutput',0);
You should avoid having all these individual variables around in the first place. Data types like arrays, cell arrays and structure arrays exist to help you with this. If you want each variable to be associated with a name, you can use a structure array. I've made an example below. Instead of assigning a value to Mean_rpm1 like you are doing now, assign it to meanStruct.Mean_rpm1 then save the entire structure.
% as you generate values for each variable, assign them to the
% appropriate field.
meanStruct.Mean_rpm1 = [10:10];
meanStruct.Mean_rpm2 = [12:15];
meanStruct.Mean_rpm3 = [13:20];
meanStruct.Mean_rpm4 = [14];
meanStruct.Mean_rpm5 = [15:18];
meanStruct.Mean_rpm6 = [16:20];
meanStruct.Mean_rpm7 = [17:22];
meanStruct.Mean_rpm8 = [18:22];
meanStruct.Mean_rpm9 = [19:22];
meanStruct.Mean_rpm10 = [20:22];
meanStruct.Mean_rpm11 = [21:22];
meanStruct.Mean_rpm12 = [22:23];
% save the structure array
save('meanValues.mat','meanStruct')
% load and access the structure array
clear all
load('meanValues.mat')
temp = meanStruct.Mean_rpm3

Matlab dynamic fieldnames structure with cell arrays

How can i access the following structure path with dynamic fieldnames:
var = 'refxtree.CaseDefinition.FlowSheetObjects.MaterialStreamObjects{8}.MaterialStreamObjectParams.Pressure.Value.Text';
fields = textscan(var,'%s','Delimiter','.');
refxtree.(fields{:}) does not work because MaterialStreamObjects contains a cell array of which I want to access the 8th cell and then continue down the structure path.
In the end I want to get and set the fieldvalues.
You need to build the appropriate input to subsref, possibly using substruct. Look at the MATLAB help.
You can define an anonymous function to navigate this particular kind of structure of the form top.field1.field2.field3{item}.field4.field5.field6.field7 (as an aside: is it really necessary to have such a complicated structure?).
getField = #(top,fields,item)top.(fields{1}).(fields{2}).(fields{3}){item}.(fields{4}).(fields{5}).(fields{6}).(fields{7})
setField = #(top,fields,item,val)subsasgn(top.(fields{1}).(fields{2}).(fields{3}){item}.(fields{4}).(fields{5}).(fields{6}),struct('type','.','subs',fields{7}),val);
You use the functions by calling
fieldValue = getField(refxtree,fields,8);
setField(refxtree,fields,8,newFieldValue);
Note that fields is required to have seven elements. If you want to generalize the above, you will have to dynamically create the above functions
In this case, it is easier to just use EVAL:
str = 'refxtree.CaseDefinition.FlowSheetObjects.MaterialStreamObjects{8}.MaterialStreamObjectParams.Pressure.Value.Text';
%# get
x = eval(str)
%# set
evalc([str ' = 99']);