Curve fitting equations involving integrals in MATLAB - matlab

I have an equation that I am trying to fit to some experimental data. In the past I have used lsqcurvefit and passed in the experimental data, and the function that describes my fitted data. E.g.
model = #(p,x) exp(-p(1).*x);
startingVals = 0.5;
lsqcurvefit(model,startingVals,expData_x,exptData_y)
This would work perfectly with MATLAB returning the value of p that most closely fits my data. Internally I guess it is tweaking the values of p a smart way to minimise the sum of the differences squared.
Now I have a model that is not analytical and want to find the closest fitting B. An example is:
model = integral(#(v)besselj(0,x.*v.*B), 0, 40);
(just an example, maybe it can be solved analytically but my one definitively cant).
So to calculate the model I put in a trial version of B, and it calculates the function for each x. What I have been doing so far is calulating the model for a series of trial B terms, eg B = 1:1:10. This would give me 10 vectors each one with a different set of model points. I would then just run script which finds the smallest residual from each model calculation minus the experimental data.
This seems to work okay but now I am comming to an equation with more than one fitting term. For instance
model = integral(#(v)(C.*D).*besselj(0,x.*v.*B).^(E), 0, 40);
I now may want to find the best fitting values of B, C, D and E. My method would still work but there would be a crazy amount of experimental trials generated for instance looping through 10 values of each would be 10,000 individual curves generated.
Is my method fine or am I missing out on a much easier way to fit these kinds of functions?
Thanks
edit: Working code thanks to David.
Note that sometimes lsqcurvefit comes back with complex numbers but that is another issue. Obviously real data wont be a perfect fit but I had no idea you can pass such functions to lsqcurvefit.
A = 0.2; %input variables to 'solve' for later
B = 0.3;
C = 0.4;
D = 0.5;
x = logspace(-2,2,200); %x data
options = optimset('MaxFunEvals', 200,'MaxIter', 200,'TolFun',1e-10,'Display','off');
genData = arrayfun(#(x) integral(#(v) A.*B.*besselj(0,x.*v.*C).^D, 0, 40),x); %generate some data
genData = real(genData);
model = #(p,x) real(arrayfun(#(x) integral(#(v) p(1).*p(2).*besselj(0,x.*v.*p(3)).^p(4), 0, 40),x));
startingVals = [0.5 0.5 0.5 0.5]; %guess values
lb = [0.1 0.1 0.1 0.1]; %lower bound
ub = [1 1 1 1]; %upper bound
[p] = lsqcurvefit(model,startingVals,x,genData,lb,ub,options); %do the fit, takes a while
fitData = real(arrayfun(#(x) integral(#(v) p(1).*p(2).*besselj(0,x.*v.*p(3)).^p(4), 0, 40),x)); %regenrate data based on fitted values
semilogx(x,genData,'ro')
hold on
semilogx(x,fitData,'b')

This should let lsqcurvefit be able to work on model:
model=#(p,x) arrayfun(#(x) integral(#(v) p(1).*p(2).*besselj(0,x.*v.*p(3)).^p(4), 0, 40),x);
however I made up some coefficients B, C, D and E and performance isn't very good. I'm not sure whether it's because I picked bad numbers or whether it is a slow method.

Related

Fitting Data with Linear Combination of Vectors in MATLAB with Constraints

Working in MATLAB. I have the following equation:
S = aW + bX + cY + dZ
where S,W,X,Y, and Z are all known n x 1 vectors. I am trying to fit the data of S with a linear combination of the basis vectors W,X,Y, and Z with the constraint of the constants (a,b,c,d) being greater than 0. I have managed to do this in Excel's solver, and have attempted to figure it out on MATLAB, being directed towards functions like fmincon, but I am not overly familiar with MATLAB and feel I am misunderstanding the use of fmincon.
I am looking for help with understanding fmincon's use towards my problem, or redirection towards a more efficient method for solving.
Currently I have:
initials = [0.2 0.2 0.2 0.2];
fun = #(x)x(1)*W + x(2)*X + x(3)*Y + x(4)*Z;
lb = [0,0,0,0];
soln = fmincon(fun,initials,data,b,Aeq,beq,lb,ub);
I am receiving an error stating "A must have 4 column(s)". Where A is referring to my variable data which corresponds to my S in the above equation. I do not understand why it is expecting 4 columns. Also to note the variables that are in my above snippet that are not explicitly defined are defined as [], serving as space holders.
Using fmincon is a huge overkill in this case. It's like using big heavy microscope to crack nuts... or martian rover to tow a pushcart or... anyway :) May be it's OK if you don't have to process large sets of vectors. If you need to fit hundreds of thousands of such vectors it can take hours. But this classic solution will be faster by several orders of magnitude.
%first make a n x 4 matrix of your vectors;
P=[W,X,Y,Z];
% now your equation looks like this S = P*m where m is 4 x 1 vectro
% containing your coefficients ( m = [a,b,c,d] )
% so solution will be simply
m_1 = inv(P'*P)*P'*S;
% or you can use this form
m_2 = (P'*P)\P'*S;
% or even simpler
m_3 = (S'/P')';
% all three solutions should give exactly same resul
% third solution is the neatest but may not work in every version of matlab
% Your modeled vector will be
Sm = P*m_3; %you can use any of m_1, m_2 or m_3;
% And your residual
R = S-Sm;
If you need to procees many vectors don't use for cycle. For cycles are very slow in Matlab and you should use matrices instead, if possible. S can also be nk matrix, where k is number vectors you want to process. In this case m will be 4k matrix.
What you are trying to do is similar to the answer I gave at is there a python (or matlab) function that achieves the minimum MSE between given set of output vector and calculated set of vector?.
The procedure is similar to what you are doing in EXCEL with solver. You create an objective function that takes (a, b, c, d) as the input parameters and output a measure of fit (mse) and then use fmincon or similar solver to get the best (a, b, c, d) that minimize this mse. See the code below (no MATLAB to test it but it should work).
function [a, b, c, d] = optimize_abcd(W, X, Y, Z)
%=========================================================
%Second argument is the starting point, second to the last argument is the lower bound
%to ensure the solutions are all positive
res = fmincon(#MSE, [0,0,0,0], [], [], [], [], [0,0,0,0], []);
a=res(1);
b=res(2);
c=res(3);
d=res(4);
function mse = MSE(x_)
a_=x_(1);
b_=x_(2);
c_=x_(3);
d_=x_(4);
S_ = a_*W + b_*X + c_*Y + d_*Z
mse = norm(S_-S);
end
end

Matlab : Convolution and deconvolution results weird

Data x is input to an autoregreesive model (AR) model. The output of the AR model is corrupted with Additive White Gaussian Noise at SNR = 30 dB. The observations are denoted by noisy_y.
Let there be close estimates h_hat of the AR model (these are obtained from Least Squares estimation). I want to see how close the input obtained from deconvolution with h_hat and the measurements is to the known x.
My confusion is which variable to use for deconvolution -- clean y or noisy y?
Upon deconvolution, I should get x_hat. I am not sure if the correct way to perform deconvolution is using the noisy_y or using the y before adding noise. I have used the following code.
Can somebody please help in what is the correct method to plot x and x_hat.
Below is the plot of x vs x_hat. As can be seen, that these do not match. Where is my understand wrong? Please help.
The code is:
clear all
N = 200; %number of data points
a1=0.1650;
b1=-0.850;
h = [1 a1 b1]; %true coefficients
x = rand(1,N);
%%AR model
y = filter(1,h,x); %transmitted signal through AR channel
noisy_y = awgn(y,30,'measured');
hat_h= [1 0.133 0.653];
x_hat = filter(hat_h,1,noisy_y); %deconvolution
plot(1:50,x(1:50),'b');
hold on;
plot(1:50,x_hat(1:50),'-.rd');
A first issue is that the coefficients h of your AR model correspond to an unstable system since one of its poles is located outside the unit circle:
>> abs(roots(h))
ans =
1.00814
0.84314
Parameter estimation techniques are then quite likely to fail to converge given a diverging input sequence. Indeed, looking at the stated hat_h = [1 0.133 0.653] it is pretty clear that the parameter estimation did not converge anywhere near the actual coefficients. In your specific case you did not provide the code illustrating how you obtained hat_h (other than specifying that it was "obtained from Least Squares estimation"), so it isn't possible to further comment on what went wrong with your estimation.
That said, the standard formulation of Least Mean Squares (LMS) filters is given for an MA model. A common method for AR parameter estimation is to solve the Yule-Walker equations:
hat_h = aryule(noisy_y - mean(noisy_y), length(h)-1);
If we were to use this estimation method with the stable system defined by:
h = [1 -a1 -b1];
x = rand(1,N);
%%AR model
y = filter(1,h,x); %transmitted signal through AR channel
noisy_y = awgn(y,30,'measured');
hat_h = aryule(noisy_y - mean(noisy_y), length(h)-1);
x_hat = filter(hat_h,1,noisy_y); %deconvolution
The plot of x and x_hat would look like:

find the line which best fits to the data

I'm trying to find the line which best fits to the data. I use the following code below but now I want to have the data placed into an array sorted so it has the data which is closest to the line first how can I do this? Also is polyfit the correct function to use for this?
x=[1,2,2.5,4,5];
y=[1,-1,-.9,-2,1.5];
n=1;
p = polyfit(x,y,n)
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
PS: I'm using Octave 4.0 which is similar to Matlab
You can first compute the error between the real value y and the predicted value f
err = abs(y-f);
Then sort the error vector
[val, idx] = sort(err);
And use the sorted indexes to have your y values sorted
y2 = y(idx);
Now y2 has the same values as y but the ones closer to the fitting value first.
Do the same for x to compute x2 so you have a correspondence between x2 and y2
x2 = x(idx);
Sembei Norimaki did a good job of explaining your primary question, so I will look at your secondary question = is polyfit the right function?
The best fit line is defined as the line that has a mean error of zero.
If it must be a "line" we could use polyfit, which will fit a polynomial. Of course, a "line" can be defined as first degree polynomial, but first degree polynomials have some properties that make it easy to deal with. The first order polynomial (or linear) equation you are looking for should come in this form:
y = mx + b
where y is your dependent variable and X is your independent variable. So the challenge is this: find the m and b such that the modeled y is as close to the actual y as possible. As it turns out, the error associated with a linear fit is convex, meaning it has one minimum value. In order to calculate this minimum value, it is simplest to combine the bias and the x vectors as follows:
Xcombined = [x.' ones(length(x),1)];
then utilized the normal equation, derived from the minimization of error
beta = inv(Xcombined.'*Xcombined)*(Xcombined.')*(y.')
great, now our line is defined as Y = Xcombined*beta. to draw a line, simply sample from some range of x and add the b term
Xplot = [[0:.1:5].' ones(length([0:.1:5].'),1)];
Yplot = Xplot*beta;
plot(Xplot, Yplot);
So why does polyfit work so poorly? well, I cant say for sure, but my hypothesis is that you need to transpose your x and y matrixies. I would guess that that would give you a much more reasonable line.
x = x.';
y = y.';
then try
p = polyfit(x,y,n)
I hope this helps. A wise man once told me (and as I learn every day), don't trust an algorithm you do not understand!
Here's some test code that may help someone else dealing with linear regression and least squares
%https://youtu.be/m8FDX1nALSE matlab code
%https://youtu.be/1C3olrs1CUw good video to work out by hand if you want to test
function [a0 a1] = rtlinreg(x,y)
x=x(:);
y=y(:);
n=length(x);
a1 = (n*sum(x.*y) - sum(x)*sum(y))/(n*sum(x.^2) - (sum(x))^2); %a1 this is the slope of linear model
a0 = mean(y) - a1*mean(x); %a0 is the y-intercept
end
x=[65,65,62,67,69,65,61,67]'
y=[105,125,110,120,140,135,95,130]'
[a0 a1] = rtlinreg(x,y); %a1 is the slope of linear model, a0 is the y-intercept
x_model =min(x):.001:max(x);
y_model = a0 + a1.*x_model; %y=-186.47 +4.70x
plot(x,y,'x',x_model,y_model)

How to fit an exponential curve to damped harmonic oscillation data in MATLAB?

I'm trying to fit an exponential curve to data sets containing damped harmonic oscillations. The data is a bit complicated in the sense that the sinusoidal oscillations contain many frequencies as seen below:
I need to find the rate of decay in the data. The method I am using can be found here. How it works, is it takes the log of the y values above the steady state value and then uses:
lsqlin(A,y1(:),-A,-y1(:),[],[],[],[],[],optimset('algorithm','active-set','display','off'))
To fit it.
However, this results in the following data fits:
I tried using a linear regression fit which obviously didn't work because it took the average. I also tried RANSAC thinking that there is more data near the peaks. It worked a bit better than the linear regression but the method is flawed as there are times when more points exist at the wrong regions.
Does anyone know of a good method to just fit the peaks for this data?
Currently, I'm thinking of dividing the 500 data points into 10 different regions and in each region find the largest value. At the end, I should have 50 points that I can fit using any of the exponential fitting methods mentioned above. What do you think of this method?
Thought I'd give everyone an update of potential solutions that may work. As mentioned earlier, the data is complicated by the varying sinusoidal frequencies, so certain methods may not work because of this. The methods listed below can be good depending on the data and the frequencies involved.
First off, I assume that the data has the form:
y = average + b*e^-(c*x)
In my case, the average is 290 so we have:
y = 290 + b*e^-(c*x)
With that being said, let's dive into the different methods that I tried:
findpeaks() Method
This is the method that Alexander Büse suggested. It's a pretty good method for most data, but for my data, since there's multiple sinusoidal frequencies, it gets the wrong peaks. The red x's show the peaks.
% Find Peaks Method
[max_num,max_ind] = findpeaks(y(ind));
plot(max_ind,max_num,'x','Color','r'); hold on;
x1 = max_ind;
y1 = log(max_num-290);
coeffs = polyfit(x1,y1,1)
b = exp(coeffs(2));
c = coeffs(1);
RANSAC
RANSAC is good if you have most of your data at the peaks. You see that in mine, because of the multiple frequencies, more peaks exist near the top. However, the problem with my data is that not all the data sets are like this. Hence, it occasionally worked.
% RANSAC Method
ind = (y > avg);
x1 = x(ind);
y1 = log(y(ind) - avg);
iterNum = 300;
thDist = 0.5;
thInlrRatio = .1;
[t,r] = ransac([x1;y1'],iterNum,thDist,thInlrRatio);
k1 = -tan(t);
b1 = r/cos(t);
% plot(x1,k1*x1+b1,'r'); hold on;
b = exp(b1);
c = k1;
Lsqlin Method
This method is the one used here. It uses Lsqlin to constrain the system. However, it seems to ignore the data in the middle. Depending on your data set, this could work really well as it did for the person in the original post.
% Lsqlin Method
avg = 290;
ind = (y > avg);
x1 = x(ind);
y1 = log(y(ind) - avg);
A = [ones(numel(x1),1),x1(:)]*1.00;
coeffs = lsqlin(A,y1(:),-A,-y1(:),[],[],[],[],[],optimset('algorithm','active-set','display','off'));
b = exp(coeffs(2));
c = coeffs(1);
Find Peaks in Period
This is the method I mentioned in my post where I get the peak in each region, . This method works pretty well and from this I realized that my data may not actually have a perfect exponential fit. We see that it is unable to fit the large peaks at the beginning. I was able to make this a bit better by only using the first 150 data points and ignoring the steady state data points. Here I found the peak every 25 data points.
% Incremental Method 2 Unknowns
x1 = [];
y1 = [];
max_num=[];
max_ind=[];
incr = 25;
for i=1:floor(size(y,1)/incr)
[max_num(end+1),max_ind(end+1)] = max(y(1+incr*(i-1):incr*i));
max_ind(end) = max_ind(end) + incr*(i-1);
if max_num(end) > avg
x1(end+1) = max_ind(end);
y1(end+1) = log(max_num(end)-290);
end
end
plot(max_ind,max_num,'x','Color','r'); hold on;
coeffs = polyfit(x1,y1,1)
b = exp(coeffs(2));
c = coeffs(1);
Using all 500 data points:
Using the first 150 data points:
Find Peaks in Period With b Constrained
Since I want it to start at the first peak, I constrained the b value. I know the system is y=290+b*e^-c*x and I constrain it such that b=y(1)-290. By doing so, I just need to solve for c where c=(log(y-290)-logb)/x. I can then take the average or median of c. This method is quite good as well, it doesn't fit the value near the end as well but that isn't as big of a deal since the change there is minimal.
% Incremental Method 1 Unknown (b is constrained y(1)-290 = b)
b = y(1) - 290;
c = [];
max_num=[];
max_ind=[];
incr = 25;
for i=1:floor(size(y,1)/incr)
[max_num(end+1),max_ind(end+1)] = max(y(1+incr*(i-1):incr*i));
max_ind(end) = max_ind(end) + incr*(i-1);
if max_num(end) > avg
c(end+1) = (log(max_num(end)-290)-log(b))/max_ind(end);
end
end
c = mean(c); % Or median(c) works just as good
Here I take the peak for every 25 data points and then take the mean of c
Here I take the peak for every 25 data points and then take the median of c
Here I take the peak for every 10 data points and then take the mean of c
If the main goal is to extract the damping parameter from the fit, maybe you want to consider fitting directly a damped sine curve to your data. Something like this (created with the curve fitting tool):
[xData, yData] = prepareCurveData( x, y );
ft = fittype( 'a + sin(b*x - c).*exp(d*x)', 'independent', 'x', 'dependent', 'y' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.StartPoint = [1 0.285116122712545 0.805911873245316 0.63235924622541];
[fitresult, gof] = fit( xData, yData, ft, opts );
plot( fitresult, xData, yData );
Especially since some of your example data really don't have many data points in the interesting region (above the noise).
If however, you really need to fit directly to maxima of the experimental data, you could use the findpeaks function to select only the maxima and then fit to them. You may want to play a bit with the MinPeakProminence parameter to adjust it to your needs.

How can we produce kappa and delta in the following model using Matlab?

I have a following stochastic model describing evolution of a process (Y) in space and time. Ds and Dt are domain in space (2D with x and y axes) and time (1D with t axis). This model is usually known as mixed-effects model or components-of-variation models
I am currently developing Y as follow:
%# Time parameters
T=1:1:20; % input
nT=numel(T);
%# Grid and model parameters
nRow=100;
nCol=100;
[Grid.Nx,Grid.Ny,Grid.Nt] = meshgrid(1:1:nCol,1:1:nRow,T);
xPower=0.1;
tPower=1;
noisePower=1;
detConstant=1;
deterministic_mu = detConstant.*(((Grid.Nt).^tPower)./((Grid.Nx).^xPower));
beta_s = randn(nRow,nCol); % mean-zero random effect representing location specific variability common to all times
gammaTemp = randn(nT,1);
for t = 1:nT
gamma_t(:,:,t) = repmat(gammaTemp(t),nRow,nCol); % mean-zero random effect representing time specific variability common to all locations
end
var=0.1;% noise has variance = 0.1
for t=1:nT
kappa_st(:,:,t) = sqrt(var)*randn(nRow,nCol);
end
for t=1:nT
Y(:,:,t) = deterministic_mu(:,:,t) + beta_s + gamma_t(:,:,t) + kappa_st(:,:,t);
end
My questions are:
How to produce delta in the expression for Y and the difference in kappa and delta?
Help explain, through some illustration using Matlab, if I am correctly producing Y?
Please let me know if you need some more information/explanation. Thanks.
First, I rewrote your code to make it a bit more efficient. I see you generate linearly-spaced grids for x,y and t and carry out the computation for all points in this grid. This approach has severe limitations on the maximum attainable grid resolution, since the 3D grid (and all variables defined with it) can consume an awfully large amount of memory if the resolution goes up. If the model you're implementing will grow in complexity and size (it often does), I'd suggest you throw this all into a function accepting matrix/vector inputs for s and t, which will be a bit more flexible in this regard -- processing "blocks" of data that will otherwise not fit in memory will be a lot easier that way.
Then, I generated the the delta_st term with rand instead of randn since the noise should be "white". Now I'm very unsure about that last one, and I didn't have time to read through the paper you linked to -- can you tell me on what pages I can find relevant the sections for the delta_st?
Now, the code:
%# Time parameters
T = 1:1:20; % input
nT = numel(T);
%# Grid and model parameters
nRow = 100;
nCol = 100;
% noise has variance = 0.1
var = 0.1;
xPower = 0.1;
tPower = 1;
noisePower = 1;
detConstant = 1;
[Grid.Nx,Grid.Ny,Grid.Nt] = meshgrid(1:nCol,1:nRow,T);
% deterministic mean
deterministic_mu = detConstant .* Grid.Nt.^tPower ./ Grid.Nx.^xPower;
% mean-zero random effect representing location specific
% variability common to all times
beta_s = repmat(randn(nRow,nCol), [1 1 nT]);
% mean-zero random effect representing time specific
% variability common to all locations
gamma_t = bsxfun(#times, ones(nRow,nCol,nT), randn(1, 1, nT));
% mean zero random effect capturing the spatio-temporal
% interaction not found in the larger-scale deterministic mu
kappa_st = sqrt(var)*randn(nRow,nCol,nT);
% mean zero random effect representing the micro-scale
% spatio-temporal variability that is modelled by white
% noise (i.i.d. at different time steps) in Ds·Dt
delta_st = noisePower * (rand(nRow,nCol,nT)-0.5);
% Final result:
Y = deterministic_mu + beta_s + gamma_t + kappa_st + delta_st;
Your implementation samples beta, gamma and kappa as if they are white (e.g. their values at each (x,y,t) are independent). The descriptions of the terms suggest that this is not meant to be the case. It looks like delta is supposed to capture the white noise, while the other terms capture the correlations over their respective domains. e.g. there is a non-zero correlation between gamma(t_1) and gamma(t_1+1).
If you wish to model gamma as a stationary Gaussian Markov process with variance var_g and correlation cor_g between gamma(t) and gamma(t+1), you can use something like
gamma_t = nan( nT, 1 );
gamma_t(1) = sqrt(var_g)*randn();
K_g = cor_g/var_g;
K_w = sqrt( (1-K_g^2)*var_g );
for t = 2:nT,
gamma_t(t) = K_g*gamma_t(t-1) + K_w*randn();
end
gamma_t = reshape( gamma_t, [ 1 1 nT ] );
The formulas I've used for gains K_g and K_w in the above code (and the initialization of gamma_t(1)) produce the desired stationary variance \sigma^2_0 and one-step covariance \sigma^2_1:
Note that the implementation above assumes that later you will sum the terms using bsxfun to do the "repmat" for you:
Y = bsxfun( #plus, deterministic_mu + kappa_st + delta_st, beta_s );
Y = bsxfun( #plus, Y, gamma_t );
Note that I haven't tested the above code, so you should confirm with sampling that it does actually produce a zero noise process of the specified variance and covariance between adjacent samples. To sample beta the same procedure can be extended into two dimensions, but the principles are essentially the same. I suspect kappa should be similarly modeled as a Markov Gaussian Process, but in all three dimensions and with a lower variance to represent higher-order effects not captured in mu, beta and gamma.
Delta is supposed to be zero mean stationary white noise. Assuming it to be Gaussian with variance noisePower one would sample it using
delta_st = sqrt(noisePower)*randn( [ nRows nCols nT ] );