Matlab : Convolution and deconvolution results weird - matlab

Data x is input to an autoregreesive model (AR) model. The output of the AR model is corrupted with Additive White Gaussian Noise at SNR = 30 dB. The observations are denoted by noisy_y.
Let there be close estimates h_hat of the AR model (these are obtained from Least Squares estimation). I want to see how close the input obtained from deconvolution with h_hat and the measurements is to the known x.
My confusion is which variable to use for deconvolution -- clean y or noisy y?
Upon deconvolution, I should get x_hat. I am not sure if the correct way to perform deconvolution is using the noisy_y or using the y before adding noise. I have used the following code.
Can somebody please help in what is the correct method to plot x and x_hat.
Below is the plot of x vs x_hat. As can be seen, that these do not match. Where is my understand wrong? Please help.
The code is:
clear all
N = 200; %number of data points
a1=0.1650;
b1=-0.850;
h = [1 a1 b1]; %true coefficients
x = rand(1,N);
%%AR model
y = filter(1,h,x); %transmitted signal through AR channel
noisy_y = awgn(y,30,'measured');
hat_h= [1 0.133 0.653];
x_hat = filter(hat_h,1,noisy_y); %deconvolution
plot(1:50,x(1:50),'b');
hold on;
plot(1:50,x_hat(1:50),'-.rd');

A first issue is that the coefficients h of your AR model correspond to an unstable system since one of its poles is located outside the unit circle:
>> abs(roots(h))
ans =
1.00814
0.84314
Parameter estimation techniques are then quite likely to fail to converge given a diverging input sequence. Indeed, looking at the stated hat_h = [1 0.133 0.653] it is pretty clear that the parameter estimation did not converge anywhere near the actual coefficients. In your specific case you did not provide the code illustrating how you obtained hat_h (other than specifying that it was "obtained from Least Squares estimation"), so it isn't possible to further comment on what went wrong with your estimation.
That said, the standard formulation of Least Mean Squares (LMS) filters is given for an MA model. A common method for AR parameter estimation is to solve the Yule-Walker equations:
hat_h = aryule(noisy_y - mean(noisy_y), length(h)-1);
If we were to use this estimation method with the stable system defined by:
h = [1 -a1 -b1];
x = rand(1,N);
%%AR model
y = filter(1,h,x); %transmitted signal through AR channel
noisy_y = awgn(y,30,'measured');
hat_h = aryule(noisy_y - mean(noisy_y), length(h)-1);
x_hat = filter(hat_h,1,noisy_y); %deconvolution
The plot of x and x_hat would look like:

Related

finding peaks that have some structure in 1-d

I have signal with peaks that has some structure on top of some background, and I'm trying to find a robust way to locate their positions and amplitudes.
For example, assume the peak has this form:
t=linspace(0,10,1e3);
w=0.25;
rw=#(t0) 2/(sqrt(3*w)*pi^0.25)*(1-((t-t0)/w).^2).*exp(-(t-t0).^2/(2*w.^2));
and I have several peaks a bit too close so their structure starts to interfere with the others, and one separated, so you can see it's structure:
pos=[ 2 2.5 3 8]; % positions
total_signal=0.*t;
for i=1:length(pos)
total_signal=total_signal+rw(pos(i));
end
plot(t,total_signal);
So the goal is to find all peaks found in total_signal and check that their positions agree with the original positions that were used to generate them in pos.
Your signal can be thought of as the convolution of a pulse train with the peak shape. Deconvolution can be used to retrieve the pulse train, whose peaks are the locations you are looking for. This assumes that the peak shape is known and constant.
I will start by rewriting your code as follows:
t = linspace(0,10,1e3);
w = 0.25;
rw = #(t) 2/(sqrt(3*w)*pi^0.25)*(1-((t)/w).^2).*exp(-(t).^2/(2*w.^2));
pos = [2, 2.5, 3, 8];
total_signal = zeros(size(t));
for i=1:length(pos)
total_signal = total_signal + rw(t-pos(i));
end
total_signal = total_signal + randn(size(t))*1e-2;
plot(t,total_signal);
I've changed rw to take t-t0, rather than just t0. This will allow me later to create a clean signal with just one peak in the middle. I have also added noise to the signal, for a more realistic problem. Without the noise, the problem is a lot easier to solve.
Wiener deconvolution is the simplest approach to solve this problem. In short, we assume that
total_signal = conv(pulse_train, shape)
In the frequency domain, this is written as
G = F .* H
(with .* the element-wise multiplication, using MATLAB syntax here). The Wiener deconvolution is:
F = (conj(H) .* G) ./ (abs(H).^2 + k)
with k some constant that we can tune to regularize the solution.
We implement this as follows:
shape = rw(linspace(-5,5,1e3));
G = fft(total_signal);
H = fft(ifftshift(shape)); % ifftshift moves the origin to sample #0, as expected by FFT.
k = 1;
F = (conj(H) .* G) ./ (abs(H).^2 + k);
pulse_train = ifft(F);
Now, findpeaks (requires the Signal Processing Toolbox) can be used to find the prominent peaks:
findpeaks(pulse_train, 'MinPeakProminence', 0.02)
Note how the four peaks are approximately the same height. It's not exact, because we're regularizing to deal with the noise. An exact solution is only possible in the noise-free case. Without noise, k=0, and the expression simplifies to F = G ./ H.
Also, the x-axis is off in the plot produced by findpeaks, but this shouldn't affect the results. The locations returned by it are indices into the array, those same indices can be used to index into t and find the actual locations of the peaks.

find the line which best fits to the data

I'm trying to find the line which best fits to the data. I use the following code below but now I want to have the data placed into an array sorted so it has the data which is closest to the line first how can I do this? Also is polyfit the correct function to use for this?
x=[1,2,2.5,4,5];
y=[1,-1,-.9,-2,1.5];
n=1;
p = polyfit(x,y,n)
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
PS: I'm using Octave 4.0 which is similar to Matlab
You can first compute the error between the real value y and the predicted value f
err = abs(y-f);
Then sort the error vector
[val, idx] = sort(err);
And use the sorted indexes to have your y values sorted
y2 = y(idx);
Now y2 has the same values as y but the ones closer to the fitting value first.
Do the same for x to compute x2 so you have a correspondence between x2 and y2
x2 = x(idx);
Sembei Norimaki did a good job of explaining your primary question, so I will look at your secondary question = is polyfit the right function?
The best fit line is defined as the line that has a mean error of zero.
If it must be a "line" we could use polyfit, which will fit a polynomial. Of course, a "line" can be defined as first degree polynomial, but first degree polynomials have some properties that make it easy to deal with. The first order polynomial (or linear) equation you are looking for should come in this form:
y = mx + b
where y is your dependent variable and X is your independent variable. So the challenge is this: find the m and b such that the modeled y is as close to the actual y as possible. As it turns out, the error associated with a linear fit is convex, meaning it has one minimum value. In order to calculate this minimum value, it is simplest to combine the bias and the x vectors as follows:
Xcombined = [x.' ones(length(x),1)];
then utilized the normal equation, derived from the minimization of error
beta = inv(Xcombined.'*Xcombined)*(Xcombined.')*(y.')
great, now our line is defined as Y = Xcombined*beta. to draw a line, simply sample from some range of x and add the b term
Xplot = [[0:.1:5].' ones(length([0:.1:5].'),1)];
Yplot = Xplot*beta;
plot(Xplot, Yplot);
So why does polyfit work so poorly? well, I cant say for sure, but my hypothesis is that you need to transpose your x and y matrixies. I would guess that that would give you a much more reasonable line.
x = x.';
y = y.';
then try
p = polyfit(x,y,n)
I hope this helps. A wise man once told me (and as I learn every day), don't trust an algorithm you do not understand!
Here's some test code that may help someone else dealing with linear regression and least squares
%https://youtu.be/m8FDX1nALSE matlab code
%https://youtu.be/1C3olrs1CUw good video to work out by hand if you want to test
function [a0 a1] = rtlinreg(x,y)
x=x(:);
y=y(:);
n=length(x);
a1 = (n*sum(x.*y) - sum(x)*sum(y))/(n*sum(x.^2) - (sum(x))^2); %a1 this is the slope of linear model
a0 = mean(y) - a1*mean(x); %a0 is the y-intercept
end
x=[65,65,62,67,69,65,61,67]'
y=[105,125,110,120,140,135,95,130]'
[a0 a1] = rtlinreg(x,y); %a1 is the slope of linear model, a0 is the y-intercept
x_model =min(x):.001:max(x);
y_model = a0 + a1.*x_model; %y=-186.47 +4.70x
plot(x,y,'x',x_model,y_model)

MATLAB: 3d reconstruction using eight point algorithm

I am trying to achieve 3d reconstruction from 2 images. Steps I followed are,
1. Found corresponding points between 2 images using SURF.
2. Implemented eight point algo to find "Fundamental matrix"
3. Then, I implemented triangulation.
I have got Fundamental matrix and results of triangulation till now. How do i proceed further to get 3d reconstruction? I'm confused reading all the material available on internet.
Also, This is code. Let me know if this is correct or not.
Ia=imread('1.jpg');
Ib=imread('2.jpg');
Ia=rgb2gray(Ia);
Ib=rgb2gray(Ib);
% My surf addition
% collect Interest Points from Each Image
blobs1 = detectSURFFeatures(Ia);
blobs2 = detectSURFFeatures(Ib);
figure;
imshow(Ia);
hold on;
plot(selectStrongest(blobs1, 36));
figure;
imshow(Ib);
hold on;
plot(selectStrongest(blobs2, 36));
title('Thirty strongest SURF features in I2');
[features1, validBlobs1] = extractFeatures(Ia, blobs1);
[features2, validBlobs2] = extractFeatures(Ib, blobs2);
indexPairs = matchFeatures(features1, features2);
matchedPoints1 = validBlobs1(indexPairs(:,1),:);
matchedPoints2 = validBlobs2(indexPairs(:,2),:);
figure;
showMatchedFeatures(Ia, Ib, matchedPoints1, matchedPoints2);
legend('Putatively matched points in I1', 'Putatively matched points in I2');
for i=1:matchedPoints1.Count
xa(i,:)=matchedPoints1.Location(i);
ya(i,:)=matchedPoints1.Location(i,2);
xb(i,:)=matchedPoints2.Location(i);
yb(i,:)=matchedPoints2.Location(i,2);
end
matchedPoints1.Count
figure(1) ; clf ;
imshow(cat(2, Ia, Ib)) ;
axis image off ;
hold on ;
xbb=xb+size(Ia,2);
set=[1:matchedPoints1.Count];
h = line([xa(set)' ; xbb(set)'], [ya(set)' ; yb(set)']) ;
pts1=[xa,ya];
pts2=[xb,yb];
pts11=pts1;pts11(:,3)=1;
pts11=pts11';
pts22=pts2;pts22(:,3)=1;pts22=pts22';
width=size(Ia,2);
height=size(Ib,1);
F=eightpoint(pts1,pts2,width,height);
[P1new,P2new]=compute2Pmatrix(F);
XP = triangulate(pts11, pts22,P2new);
eightpoint()
function [ F ] = eightpoint( pts1, pts2,width,height)
X = 1:width;
Y = 1:height;
[X, Y] = meshgrid(X, Y);
x0 = [mean(X(:)); mean(Y(:))];
X = X - x0(1);
Y = Y - x0(2);
denom = sqrt(mean(mean(X.^2+Y.^2)));
N = size(pts1, 1);
%Normalized data
T = sqrt(2)/denom*[1 0 -x0(1); 0 1 -x0(2); 0 0 denom/sqrt(2)];
norm_x = T*[pts1(:,1)'; pts1(:,2)'; ones(1, N)];
norm_x_ = T*[pts2(:,1)';pts2(:,2)'; ones(1, N)];
x1 = norm_x(1, :)';
y1= norm_x(2, :)';
x2 = norm_x_(1, :)';
y2 = norm_x_(2, :)';
A = [x1.*x2, y1.*x2, x2, ...
x1.*y2, y1.*y2, y2, ...
x1, y1, ones(N,1)];
% compute the SVD
[~, ~, V] = svd(A);
F = reshape(V(:,9), 3, 3)';
[FU, FS, FV] = svd(F);
FS(3,3) = 0; %rank 2 constrains
F = FU*FS*FV';
% rescale fundamental matrix
F = T' * F * T;
end
triangulate()
function [ XP ] = triangulate( pts1,pts2,P2 )
n=size(pts1,2);
X=zeros(4,n);
for i=1:n
A=[-1,0,pts1(1,i),0;
0,-1,pts1(2,i),0;
pts2(1,i)*P2(3,:)-P2(1,:);
pts2(2,i)*P2(3,:)-P2(2,:)];
[~,~,va] = svd(A);
X(:,i) = va(:,4);
end
XP(:,:,1) = [X(1,:)./X(4,:);X(2,:)./X(4,:);X(3,:)./X(4,:); X(4,:)./X(4,:)];
end
function [ P1,P2 ] = compute2Pmatrix( F )
P1=[1,0,0,0;0,1,0,0;0,0,1,0];
[~, ~, V] = svd(F');
ep = V(:,3)/V(3,3);
P2 = [skew(ep)*F,ep];
end
From a quick look, it looks correct. Some notes are as follows:
You normalized code in eightpoint() is no ideal.
It is best done on the points involved. Each set of points will have its scaling matrix. That is:
[pts1_n, T1] = normalize_pts(pts1);
[pts2_n, T2] = normalize-pts(pts2);
% ... code
% solution
F = T2' * F * T
As a side note (for efficiency) you should do
[~,~,V] = svd(A, 0);
You also want to enforce the constraint that the fundamental matrix has rank-2. After you compute F, you can do:
[U,D,v] = svd(F);
F = U * diag([D(1,1),D(2,2), 0]) * V';
In either case, normalization is not the only key to make the algorithm work. You'll want to wrap the estimation of the fundamental matrix in a robust estimation scheme like RANSAC.
Estimation problems like this are very sensitive to non Gaussian noise and outliers. If you have a small number of wrong correspondence, or points with high error, the algorithm will break.
Finally, In 'triangulate' you want to make sure that the points are not at infinity prior to the homogeneous division.
I'd recommend testing the code with 'synthetic' data. That is, generate your own camera matrices and correspondences. Feed them to the estimate routine with varying levels of noise. With zero noise, you should get an exact solution up to floating point accuracy. As you increase the noise, your estimation error increases.
In its current form, running this on real data will probably not do well unless you 'robustify' the algorithm with RANSAC, or some other robust estimator.
Good luck.
Good luck.
Which version of MATLAB do you have?
There is a function called estimateFundamentalMatrix in the Computer Vision System Toolbox, which will give you the fundamental matrix. It may give you better results than your code, because it is using RANSAC under the hood, which makes it robust to spurious matches. There is also a triangulate function, as of version R2014b.
What you are getting is sparse 3D reconstruction. You can plot the resulting 3D points, and you can map the color of the corresponding pixel to each one. However, for what you want, you would have to fit a surface or a triangular mesh to the points. Unfortunately, I can't help you there.
If what you're asking is how to I proceed from fundamental Matrix + corresponding points to a dense model then you still have a lot of work ahead of you.
relative camera locations (R,T) can be calculated from a fundamental matrix assuming you know the internal camera params (up to scale, rotation, translation). To get a full dense matrix there are a few ways to go. you can try using an existing library (PMVS for example). I'd look into OpenMVG but I'm not sure about matlab interface.
Another way to go, you can compute a dense optical flow (many available for matlab). Look for a epipolar OF (It takes a fundamental matrix and restricts the solution to lie on the epipolar lines). Then you can triangulate every pixel to get a depthmap.
Finally you will have to play with format conversions to get from a depthmap to VRML (You can look at meshlab)
Sorry my answer isn't more Matlab oriented.

Fourier Transforms in MatLab

So I have had a few posts the last few days about using MatLab to perform a convolution (see here). But I am having issues and just want to try and use the convolution property of Fourier Transforms. I have the code below:
width = 83.66;
x = linspace(-400,400,1000);
a2 = 1.205e+004 ;
al = 1.778e+005 ;
b1 = 94.88 ;
c1 = 224.3 ;
d = 4.077 ;
measured = al*exp(-((abs((x-b1)./c1).^d)))+a2;
%slit
rect = #(x) 0.5*(sign(x+0.5) - sign(x-0.5));
rt = rect(x/width);
subplot(5,1,1);plot(x,measured);title('imported data-super gaussian')
subplot(5,1,2);plot(x,(real(fftshift(fft(rt)))));title('transformed slit')
subplot(5,1,3);plot(x,rt);title('slit')
u = (fftshift(fft(measured)));
l = u./(real(fftshift(fft(rt))));
response = (fftshift(ifft(l)));
subplot(5,1,4);plot(x,real(response));title('response')
%Data Check
check = conv(rt,response,'full');
z = linspace(min(x),max(x),length(check));
subplot(5,1,5);plot(z,real(check));title('check')
My goal is to take my case, which is $measured = rt \ast signal$ and find signal. Once I find my signal, I convolve it with the rectangle and should get back measured, but I do not get that.
I have very little matlab experience, and pretty much 0 signal processing experience (working with DFTs). So any advice on how to do this would be greatly appreciated!
After considering the problem statement and woodchips' advice, I think we can get closer to a solution.
Input: u(t)
Output: y(t)
If we assume the system is causal and linear we would need to shift the rect function to occur before the response, like so:
rt = rect(((x+270+(83.66/2))/83.66));
figure; plot( x, measured, x, max(measured)*rt )
Next, consider the response to the input. It looks to me to be first order. If we assume as such, we will have a system transfer function in the frequency domain of the form:
H(s) = (b1*s + b0)/(s + a0)
You had been trying to use convolution to and FFT's to find the impulse response, "transfer function" in the time domain. However, the FFT of the rect, being a sinc has a zero crossing periodically. These zero points make using the FFT to identify the system extremely difficult. Due to:
Y(s)/U(s) = H(s)
So we have U(s) = A*sinc(a*s), with zeros, which makes the division go to infinity, which doesn't make sense for a real system.
Instead, let's attempt to fit coefficients to the frequency domain linear transfer function that we postulate is of order 1 since there are no overshoots, etc, 1st order is a reasonable place to start.
EDIT
I realized my first answer here had a unstable system description, sorry! The solution to the ODE is very stiff due to the rect function, so we need to crank down the maximum time step and use a stiff solver. However, this is still a tough problem to solve this way, a more analytical approach may be more tractable.
We use fminsearch to find the continuous time transfer function coefficients like:
function x = findTf(c0,u,y,t)
% minimize the error for the estimated
% parameters of the transfer function
% use a scaled version without an offset for the response, the
% scalars can be added back later without breaking the solution.
yo = (y - min(y))/max(y);
x = fminsearch(#(c) simSystem(c,u,y,t),c0);
end
% calculate the derivatives of the transfer function
% inputs and outputs using the estimated coefficient
% vector c
function out = simSystem(c,u,y,t)
% estimate the derivative of the input
du = diff([0; u])./diff([0; t]);
% estimate the second derivative of the input
d2u = diff([0; du])./diff([0; t]);
% find the output of the system, corresponds to measured
opt = odeset('MaxStep',mean(diff(t))/100);
[~,yp] = ode15s(#(tt,yy) odeFun(tt,yy,c,du,d2u,t),t,[y(1) u(1) 0],opt);
% find the error between the actual measured output and the output
% from the system with the estimated coefficients
out = sum((yp(:,1) - y).^2);
end
function dy = odeFun(t,y,c,du,d2u,tx)
dy = [c(1)*y(3)+c(2)*y(2)-c(3)*y(1);
interp1(tx,du,t);
interp1(tx,d2u,t)];
end
Something like that anyway should get you going.
x = findTf([1 1 1]',rt',measured',x');

MATLAB - How to calculate 2D least squares regression based on both x and y. (regression surface)

I have a set of data with independent variable x and y. Now I'm trying to build a two dimensional regression model that has a regression surface cutting through my data points. However, I couldn't find a way to achieve this. Can anyone give me some assistance?
You could use my favorite, polyfitn for linear or polynomial models. If you would like a different model, please edit your question or add a comment. HTH!
EDIT
Also, take a look here under Multiple Regression, likely can help you as well.
EDIT AGAIN
Sorry, I'm having too much fun with this, here's an example of multivariate regression using least squares with stock Matlab:
t = (1:10)';
x = t;
y = exp(-t);
A = [ y x ];
z = 10*y + 0.5*x;
A\z
ans =
10.0000
0.5000
If you are performing linear regression, the best tool is the regress function. Note that, if you are fitting a model of the form y(x1,x2) = b1.f(x1) + b2.g(x2) + b3 this is still a linear regression, as long as you know the functions f and g.
Nsamp = 100; %number of samples
X1 = randn(Nsamp,1); %regressor 1 (could also be some computed f(x1) )
X2 = randn(Nsamp,1); %regressor 2 (could also be some computed g(x2) )
Y = X1 + X2 + randn(Nsamp,1); %generate some data to be regressed
%now run the regression
[b,bint,r,rint,stats] = regress(Y,[X1 X2 ones(Nsamp,1)]);
% 'b' contains the coefficients, b1,b2,b3 of the fit; can be used to plot regression surface)
% 'r' contains residuals of the fit
% 'stats' contains the overall regression R^2, F stat, p-value and error variance