Related
I have an aggregation that looks like this:
userSchema.statics.getCounts = function (req, type) {
return this.aggregate([
{ $match: { organization: req.user.organization._id } },
{
$lookup: {
from: 'tickets', localField: `${type}Tickets`, foreignField: '_id', as: `${type}_tickets`,
},
},
{ $unwind: `$${type}_tickets` },
{ $match: { [`${type}_tickets.createdAt`]: { $gte: new Date(moment().subtract(4, 'd').startOf('day').utc()), $lt: new Date(moment().endOf('day').utc()) } } },
{
$group: {
_id: {
groupDate: {
$dateFromParts: {
year: { $year: `$${type}_tickets.createdAt` },
month: { $month: `$${type}_tickets.createdAt` },
day: { $dayOfMonth: `$${type}_tickets.createdAt` },
},
},
userId: `$${type}_tickets.assignee_id`,
},
ticketCount: {
$sum: 1,
},
},
},
{
$sort: { '_id.groupDate': -1 },
},
{ $group: { _id: '$_id.userId', data: { $push: { groupDate: '$_id.groupDate', ticketCount: '$ticketCount' } } } },
]);
};
Which outputs data like this:
[
{
_id: 5aeb6b71709f43359e0888bb,
data: [
{ "groupDate": 2018-05-07T00:00:000Z", ticketCount: 4 }
}
]
Ideally though, I would have data like this:
[
{
_id: 5aeb6b71709f43359e0888bb,
data: [
{ "groupDate": 2018-05-07T00:00:000Z", assignedCount: 4, resolvedCount: 8 }
}
]
The difference being that the object for the user would output both the total number of assigned tickets and the total number of resolved tickets for each date.
My userSchema is like this:
const userSchema = new Schema({
firstName: String,
lastName: String,
assignedTickets: [
{
type: mongoose.Schema.ObjectId,
ref: 'Ticket',
index: true,
},
],
resolvedTickets: [
{
type: mongoose.Schema.ObjectId,
ref: 'Ticket',
index: true,
},
],
}, {
timestamps: true,
});
An example user doc is like this:
{
"_id": "5aeb6b71709f43359e0888bb",
"assignedTickets": ["5aeb6ba7709f43359e0888bd", "5aeb6bf3709f43359e0888c2", "5aec7e0adcdd76b57af9e889"],
"resolvedTickets": ["5aeb6bc2709f43359e0888be", "5aeb6bc2709f43359e0888bf"],
"firstName": "Name",
"lastName": "Surname",
}
An example ticket doc is like this:
{
"_id": "5aeb6ba7709f43359e0888bd",
"ticket_id": 120292,
"type": "assigned",
"status": "Pending",
"assignee_email": "email#gmail.com",
"assignee_id": "5aeb6b71709f43359e0888bb",
"createdAt": "2018-05-02T20:05:59.147Z",
"updatedAt": "2018-05-03T20:05:59.147Z",
}
I've tried adding multiple lookups and group stages, but I keep getting an empty array. If I only do one lookup and one group, I get the correct counts for the searched on field, but I'd like to have both fields in one query. Is it possible to have the query group on two lookups?
In short you seem to be coming to terms with setting up your models in mongoose and have gone overboard with references. In reality you really should not keep the arrays within the "User" documents. This is actually an "anti-pattern" which was just something mongoose used initially as a convention for keeping "references" for population where it did not understand how to translate the references from being kept in the "child" to the "parent" instead.
You actually have that data in each "Ticket" and the natural form of $lookup is to use that "foreignField" in reference to the detail from the local collection. In this case the "assignee_id" on the tickets will suffice for looking at matching back to the "_id" of the "User". Though you don't state it, your "status" should be an indicator of whether the data is actually either "assigned" as when in "Pending" state or "resolved" when it is not.
For the sake of simplicity we are going to consider the state "resolved" if it is anything other than "Pending" in value, but extending on the logic from the example for actual needs is not the problem here.
Basically then we resolve to a single $lookup operation by actually using the natural "foreign key" as opposed to keeping separate arrays.
MongoDB 3.6 and greater
Ideally you would use features from MongoDB 3.6 with sub-pipeline processing here:
// Better date calculations
const oneDay = (1000 * 60 * 60 * 24);
var now = Date.now(),
end = new Date((now - (now % oneDay)) + oneDay),
start = new Date(end.valueOf() - (4 * oneDay));
User.aggregate([
{ "$match": { "organization": req.user.organization._id } },
{ "$lookup": {
"from": Ticket.collection.name,
"let": { "id": "$_id" },
"pipeline": [
{ "$match": {
"createdAt": { "$gte": start, "$lt": end },
"$expr": {
"$eq": [ "$$id", "$assignee_id" ]
}
}},
{ "$group": {
"_id": {
"status": "$status",
"date": {
"$dateFromParts": {
"year": { "$year": "$createdAt" },
"month": { "$month": "$createdAt" },
"day": { "$dayOfMonth": "$createdAt" }
}
}
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": "$_id.date",
"data": {
"$push": {
"k": {
"$cond": [
{ "$eq": ["$_id.status", "Pending"] },
"assignedCount",
"resolvedCount"
]
},
"v": "$count"
}
}
}},
{ "$sort": { "_id": -1 } },
{ "$replaceRoot": {
"newRoot": {
"$mergeObjects": [
{ "groupDate": "$_id", "assignedCount": 0, "resolvedCount": 0 },
{ "$arrayToObject": "$data" }
]
}
}}
],
"as": "data"
}},
{ "$project": { "data": 1 } }
])
From MongoDB 3.0 and upwards
Or where you lack those features we use a different pipeline process and a little data transformation after the results are returned from the server:
User.aggregate([
{ "$match": { "organization": req.user.organization._id } },
{ "$lookup": {
"from": Ticket.collection.name,
"localField": "_id",
"foreignField": "assignee_id",
"as": "data"
}},
{ "$unwind": "$data" },
{ "$match": {
"data.createdAt": { "$gte": start, "$lt": end }
}},
{ "$group": {
"_id": {
"userId": "$_id",
"date": {
"$add": [
{ "$subtract": [
{ "$subtract": [ "$data.createdAt", new Date(0) ] },
{ "$mod": [
{ "$subtract": [ "$data.createdAt", new Date(0) ] },
oneDay
]}
]},
new Date(0)
]
},
"status": "$data.status"
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": {
"userId": "$_id.userId",
"date": "$_id.date"
},
"data": {
"$push": {
"k": {
"$cond": [
{ "$eq": [ "$_id.status", "Pending" ] },
"assignedCount",
"resolvedCount"
]
},
"v": "$count"
}
}
}},
{ "$sort": { "_id.userId": 1, "_id.date": -1 } },
{ "$group": {
"_id": "$_id.userId",
"data": {
"$push": {
"groupDate": "$_id.date",
"data": "$data"
}
}
}}
])
.then( results =>
results.map( ({ data, ...d }) =>
({
...d,
data: data.map(di =>
({
groupDate: di.groupDate,
assignedCount: 0,
resolvedCount: 0,
...di.data.reduce((acc,curr) => ({ ...acc, [curr.k]: curr.v }),{})
})
)
})
)
)
Which just really goes to show that even with the fancy features in modern releases, you really don't need them because there pretty much has always been ways to work around this. Even the JavaScript parts just had slightly longer winded versions before the current "object spread" syntax was available.
So that is really the direction you need to go in. What you certainly don't want is using "multiple" $lookup stages or even applying $filter conditions on what could potentially be large arrays. Also both forms here do their best to "filter down" the number of items "joined" from the foreign collection so as not to cause a breach of the BSON limit.
Particularly the "pre 3.6" version actually has a trick where $lookup + $unwind + $match occur in succession which you can see in the explain output. All stages actually combine into "one" stage there which solely returns only the items which match the conditions in the $match from the foreign collection. Keeping things "unwound" until we reduce further avoids BSON limit problems, as does the new form with MongoDB 3.6 where the "sub-pipeline" does all the document reduction and grouping before any results are returned.
Your one document sample would return like this:
{
"_id" : ObjectId("5aeb6b71709f43359e0888bb"),
"data" : [
{
"groupDate" : ISODate("2018-05-02T00:00:00Z"),
"assignedCount" : 1,
"resolvedCount" : 0
}
]
}
Once I expand the date selection to include that date, which of course the date selection can also be improved and corrected from your original form.
So it seems to make sense that your relationships are actually defined that way but it's just that you recorded them "twice". You don't need to and even if that's not the definition then you should actually instead record on the "child" rather than an array in the parent. We can juggle and merge the parent arrays, but that's counterproductive to actually establishing the data relations correctly and using them correctly as well.
How about something like this?
db.users.aggregate([
{
$lookup:{ // lookup assigned tickets
from:'tickets',
localField:'assignedTickets',
foreignField:'_id',
as:'assigned',
}
},
{
$lookup:{ // lookup resolved tickets
from:'tickets',
localField:'resolvedTickets',
foreignField:'_id',
as:'resolved',
}
},
{
$project:{
"tickets":{ // merge all tickets into one single array
$concatArrays:[
"$assigned",
"$resolved"
]
}
}
},
{
$unwind:'$tickets' // flatten the 'tickets' array into separate documents
},
{
$group:{ // group by 'createdAt' and 'assignee_id'
_id:{
groupDate:{
$dateFromParts:{
year:{ $year:'$tickets.createdAt' },
month:{ $month:'$tickets.createdAt' },
day:{ $dayOfMonth:'$tickets.createdAt' },
},
},
userId:'$tickets.assignee_id',
},
assignedCount:{ // get the count of assigned tickets
$sum:{
$cond:[
{ // by checking the 'type' field for a value of 'assigned'
$eq:[
'$tickets.type',
'assigned'
]
},
1, // if matching count 1
0 // else 0
]
}
},
resolvedCount:{
$sum:{
$cond:[
{ // by checking the 'type' field for a value of 'resolved'
$eq:[
'$tickets.type',
'resolved'
]
},
1, // if matching count 1
0 // else 0
]
}
},
},
},
{
$sort:{ // sort by 'groupDate' descending
'_id.groupDate':-1
},
},
{
$group:{
_id:'$_id.userId', // group again but only by userId
data:{
$push:{ // create an array
groupDate:'$_id.groupDate',
assignedCount:{
$sum:'$assignedCount'
},
resolvedCount:{
$sum:'$resolvedCount'
}
}
}
}
}
])
I have a collections with documents structured like below:
{
carrier: "abc",
flightNumber: 123,
dates: [
ISODate("2015-01-01T00:00:00Z"),
ISODate("2015-01-02T00:00:00Z"),
ISODate("2015-01-03T00:00:00Z")
]
}
I would like to search the collection to see if there are any documents with the same carrier and flightNumber that also have dates in the dates array that over lap. For example:
{
carrier: "abc",
flightNumber: 123,
dates: [
ISODate("2015-01-01T00:00:00Z"),
ISODate("2015-01-02T00:00:00Z"),
ISODate("2015-01-03T00:00:00Z")
]
},
{
carrier: "abc",
flightNumber: 123,
dates: [
ISODate("2015-01-03T00:00:00Z"),
ISODate("2015-01-04T00:00:00Z"),
ISODate("2015-01-05T00:00:00Z")
]
}
If the above records were present in the collection I would like to return them because they both have carrier: abc, flightNumber: 123 and they also have the date ISODate("2015-01-03T00:00:00Z") in the dates array. If this date were not present in the second document then neither should be returned.
Typically I would do this by grouping and counting like below:
db.flights.aggregate([
{
$group: {
_id: { carrier: "$carrier", flightNumber: "$flightNumber" },
uniqueIds: { $addToSet: "$_id" },
count: { $sum: 1 }
}
},
{
$match: {
count: { $gt: 1 }
}
}
])
But I'm not sure how I could modify this to look for array overlap. Can anyone suggest how to achieve this?
You $unwind the array if you want to look at the contents as "grouped" within them:
db.flights.aggregate([
{ "$unwind": "$dates" },
{ "$group": {
"_id": { "carrier": "$carrier", "flightnumber": "$flightnumber", "date": "$dates" },
"count": { "$sum": 1 },
"_ids": { "$addToSet": "$_id" }
}},
{ "$match": { "count": { "$gt": 1 } } },
{ "$unwind": "$_ids" },
{ "$group": { "_id": "$_ids" } }
])
That does in fact tell you which documents where the "overlap" resides, because the "same dates" along with the other same grouping key values that you are concerned about have a "count" which occurs more than once. Indicating the overlap.
Anything after the $match is really just for "presentation" as there is no point reporting the same _id value for multiple overlaps if you just want to see the overlaps. In fact if you want to see them together it would probably be best to leave the "grouped set" alone.
Now you could add a $lookup to that if retrieving the actual documents was important to you:
db.flights.aggregate([
{ "$unwind": "$dates" },
{ "$group": {
"_id": { "carrier": "$carrier", "flightnumber": "$flightnumber", "date": "$dates" },
"count": { "$sum": 1 },
"_ids": { "$addToSet": "$_id" }
}},
{ "$match": { "count": { "$gt": 1 } } },
{ "$unwind": "$_ids" },
{ "$group": { "_id": "$_ids" } },
}},
{ "$lookup": {
"from": "flights",
"localField": "_id",
"foreignField": "_id",
"as": "_ids"
}},
{ "$unwind": "$_ids" },
{ "$replaceRoot": {
"newRoot": "$_ids"
}}
])
And even do a $replaceRoot or $project to make it return the whole document. Or you could have even done $addToSet with $$ROOT if it was not a problem for size.
But the overall point is covered in the first three pipeline stages, or mostly in just the "first". If you want to work with arrays "across documents", then the primary operator is still $unwind.
Alternately for a more "reporting" like format:
db.flights.aggregate([
{ "$addFields": { "copy": "$$ROOT" } },
{ "$unwind": "$dates" },
{ "$group": {
"_id": {
"carrier": "$carrier",
"flightNumber": "$flightNumber",
"dates": "$dates"
},
"count": { "$sum": 1 },
"_docs": { "$addToSet": "$copy" }
}},
{ "$match": { "count": { "$gt": 1 } } },
{ "$group": {
"_id": {
"carrier": "$_id.carrier",
"flightNumber": "$_id.flightNumber",
},
"overlaps": {
"$push": {
"date": "$_id.dates",
"_docs": "$_docs"
}
}
}}
])
Which would report the overlapped dates within each group and tell you which documents contained the overlap:
{
"_id" : {
"carrier" : "abc",
"flightNumber" : 123.0
},
"overlaps" : [
{
"date" : ISODate("2015-01-03T00:00:00.000Z"),
"_docs" : [
{
"_id" : ObjectId("5977f9187dcd6a5f6a9b4b97"),
"carrier" : "abc",
"flightNumber" : 123.0,
"dates" : [
ISODate("2015-01-03T00:00:00.000Z"),
ISODate("2015-01-04T00:00:00.000Z"),
ISODate("2015-01-05T00:00:00.000Z")
]
},
{
"_id" : ObjectId("5977f9187dcd6a5f6a9b4b96"),
"carrier" : "abc",
"flightNumber" : 123.0,
"dates" : [
ISODate("2015-01-01T00:00:00.000Z"),
ISODate("2015-01-02T00:00:00.000Z"),
ISODate("2015-01-03T00:00:00.000Z")
]
}
]
}
]
}
UseCase: I have the following data:
{"accountNumber":"1-1", "details":["version":{ "number": "1","accountGroup":"1", "editable":"false" , "amount":100 }]}
{"accountNumber":"1-2", "details":[version":{ "number": "2", "accountGroup":"1", "editable":"false" , "amount":200}]}
{"accountNumber":"2-1", "details":[version":{ "number": "1", "accountGroup":"2", "editable":"false", "amount":200 }]}
Where: my document is account. Each record has a accountGroup (1, 2). A group can have multiple versions. AccountNumber is being initialized by the combination of AccountGroup & version
I want to get the latest version of the account (accountNumber 1-2 & 2-1) along with the sum of their amount.
Expected output:
{accountNumber:2-1}, {accountNumber: 1-2}, total: 400 (sum of amount of the latest versions of the account group)
I am using the following query:
db.getCollection('account').aggregate([
{ "$sort": { "accountNumber": 1 } },
{ "$unwind": "$details"},
{ "$group": {
"_id": "$details.version.accountGroup",
"Latestversion": { "$last": "$$ROOT" },
"total": {
$sum: "$details.version.amount"
}
}
}])
It gets the sum of the all the versions which belongs to a group.
Current output:
{"accountNumber": "1-2", total: 300}, {"accountNumber":"2-1", total: 200}
I am new to Mongodb, any help is appreciated. Looking forward for a response.
You will need two $group stages.
First $group to find the latest document for each account group and second $group to sum amount from latest document.
Something like
aggregate([
{ "$sort": { "accountNumber": 1 } },
{ "$unwind": "$details"},
{ "$group": {
"_id": "$details.version.accountGroup",
"latest": { "$last": "$$ROOT" }
}
},
{ "$group": {
"_id": null,
"accountNumbers": { $push:"$latest.accountNumber" },
"total": { $sum: "$latest.details.version.amount" }
}
}
])
You can update your structure to below and remove $unwind.
{"accountNumber":"1-1", detail:{"number": "1","accountGroup":"1", "editable":"false" , "amount":100 }}
I have documents like:
{
"from":"abc#sss.ddd",
"to" :"ssd#dff.dff",
"email": "Hi hello"
}
How can we calculate count of sum "from and to" or "to and from"?
Like communication counts between two people?
I am able to calculate one way sum. I want to have sum both ways.
db.test.aggregate([
{ $group: {
"_id":{ "from": "$from", "to":"$to"},
"count":{$sum:1}
}
},
{
"$sort" :{"count":-1}
}
])
Since you need to calculate number of emails exchanged between 2 addresses, it would be fair to project a unified between field as following:
db.a.aggregate([
{ $match: {
to: { $exists: true },
from: { $exists: true },
email: { $exists: true }
}},
{ $project: {
between: { $cond: {
if: { $lte: [ { $strcasecmp: [ "$to", "$from" ] }, 0 ] },
then: [ { $toLower: "$to" }, { $toLower: "$from" } ],
else: [ { $toLower: "$from" }, { $toLower: "$to" } ] }
}
}},
{ $group: {
"_id": "$between",
"count": { $sum: 1 }
}},
{ $sort :{ count: -1 } }
])
Unification logic should be quite clear from the example: it is an alphabetically sorted array of both emails. The $match and $toLower parts are optional if you trust your data.
Documentation for operators used in the example:
$match
$exists
$project
$cond
$lte
$strcasecmp
$toLower
$group
$sum
$sort
You basically need to consider the _id for grouping as an "array" of the possible "to" and "from" values, and then of course "sort" them, so that in every document the combination is always in the same order.
Just as a side note, I want to add that "typically" when I am dealing with messaging systems like this, the "to" and "from" sender/recipients are usually both arrays to begin with anyway, so it usally forms the base of where different variations on this statement come from.
First, the most optimal MongoDB 3.2 statement, for single addresses
db.collection.aggregate([
// Join in array
{ "$project": {
"people": [ "$to", "$from" ],
}},
// Unwind array
{ "$unwind": "$people" },
// Sort array
{ "$sort": { "_id": 1, "people": 1 } },
// Group document
{ "$group": {
"_id": "$_id",
"people": { "$push": "$people" }
}},
// Group people and count
{ "$group": {
"_id": "$people",
"count": { "$sum": 1 }
}}
]);
Thats the basics, and now the only variations are in construction of the "people" array ( stage 1 only above ).
MongoDB 3.x and 2.6.x - Arrays
{ "$project": {
"people": { "$setUnion": [ "$to", "$from" ] }
}}
MongoDB 3.x and 2.6.x - Fields to array
{ "$project": {
"people": {
"$map": {
"input": ["A","B"],
"as": "el",
"in": {
"$cond": [
{ "$eq": [ "A", "$$el" ] },
"$to",
"$from"
]
}
}
}
}}
MongoDB 2.4.x and 2.2.x - from fields
{ "$project": {
"to": 1,
"from": 1,
"type": { "$const": [ "A", "B" ] }
}},
{ "$unwind": "$type" },
{ "$group": {
"_id": "$_id",
"people": {
"$addToSet": {
"$cond": [
{ "$eq": [ "$type", "A" ] },
"$to",
"$from"
]
}
}
}}
But in all cases:
Get all recipients into a distinct array.
Order the array to a consistent order
Group on the "always in the same order" list of recipients.
Follow that and you cannot go wrong.
I have a schema like so:
schema
{
owner: <id to other document type>
created: date
}
I have an array of owner's ids: [owner_id_1, owner_id_2, ... owner_id_x]
I want to get a list of documents, with these owners, but limited to just the latest of each. Doing the queries individually:
find_one({ owner: owner_id_1 }).sort({ created: -1 }).limit(1)
But I don't want to have to fire off x of these, I'd like a way to do it in one query if possible
The .aggregate() method allows you do do this, along with matching the documents via the $in operator:
collection.aggregate([
{ "$match": { "owner": { "$in": [owner_id_1, owner_id_2, ... owner_id_x] } },
{ "$group": {
"_id": "$owner",
"created": { "$max": "$created" }
}}
])
Gets the maximum ( $max ) "created" value for each "owner" you asked for with the $in, which takes an array of values to match the field in the condition.
If you wanted more data than just that one field, the use $sort before you $group:
collection.aggregate([
{ "$match": { "owner": { "$in": [owner_id_1, owner_id_2, ... owner_id_x] } },
{ "$sort": { "owner": 1, "created": -1 } },
{ "$group": {
"_id": "$owner",
"created": { "$first": "$created" },
"docId": { "$first": "$_id" },
"something": { "$first": "$something" }
}}
])
And the $first takes the first value ( descending was done in sort ) from each grouping boundary.