Finding multiple documents with one query - mongodb

I have a schema like so:
schema
{
owner: <id to other document type>
created: date
}
I have an array of owner's ids: [owner_id_1, owner_id_2, ... owner_id_x]
I want to get a list of documents, with these owners, but limited to just the latest of each. Doing the queries individually:
find_one({ owner: owner_id_1 }).sort({ created: -1 }).limit(1)
But I don't want to have to fire off x of these, I'd like a way to do it in one query if possible

The .aggregate() method allows you do do this, along with matching the documents via the $in operator:
collection.aggregate([
{ "$match": { "owner": { "$in": [owner_id_1, owner_id_2, ... owner_id_x] } },
{ "$group": {
"_id": "$owner",
"created": { "$max": "$created" }
}}
])
Gets the maximum ( $max ) "created" value for each "owner" you asked for with the $in, which takes an array of values to match the field in the condition.
If you wanted more data than just that one field, the use $sort before you $group:
collection.aggregate([
{ "$match": { "owner": { "$in": [owner_id_1, owner_id_2, ... owner_id_x] } },
{ "$sort": { "owner": 1, "created": -1 } },
{ "$group": {
"_id": "$owner",
"created": { "$first": "$created" },
"docId": { "$first": "$_id" },
"something": { "$first": "$something" }
}}
])
And the $first takes the first value ( descending was done in sort ) from each grouping boundary.

Related

MongoDB find count of all possible 'columns' within a collection

Is there a way to find all possible number of 'columns' or json properties available in a collection? (I know it's not correct to call them columns, but just for the ease of understanding)
For example, all the following documents are in the same collection called 'people':
{"Name": "bob", "Profession": "IT", "Height": 200},
{"Name": "simon", "Weight": 100, "IQ": 120},
{"Name": "james", "Weight": 130, "Glasses": "Yes"}
The possible 'columns' here are: Name, Profession, Height, Weight, IQ and Glasses. A total of 6.
Is there any way I can do an operation which gets this count of 6? (extra useful if there's also a pymongo variant)
I'm wanting to transfer data from MongoDB into a table format, and knowing the overall number of columns the table can have is useful.
You can use this aggregation query to get your desired result:
The trick here is to use $objectToArray to get the keys as values. Then remove the key _id (if exists) and group to get the total.
db.collection.aggregate([
{
"$project": {
"keys": {
"$objectToArray": "$$ROOT"
}
}
},
{
"$unwind": "$keys"
},
{
"$match": {
"keys.k": {
"$ne": "_id"
}
}
},
{
"$group": {
"_id": "$keys.k",
"total": {
"$sum": 1
}
}
},
{
"$group": {
"_id": null,
"total": {
"$sum": 1
}
}
}
])
Example here
Edit:
Another way to avoid $unwind and double $group id this query:
The idea is the same as before, use $objectToArray to get the keys as key.k and then $group all values and add into an array.
Then get the size of the array after to do some calculations: A $reduce to flatten the array and $filter to not get the _id field.
Note that if you want to count the _id you can simply remove the $filter stage like this example
db.collection.aggregate([
{
"$project": {
"keys": {
"$objectToArray": "$$ROOT"
}
}
},
{
"$group": {
"_id": null,
"keys": {
"$addToSet": "$keys.k"
}
}
},
{
"$project": {
"_id": 0,
"keys": {
"$size": {
"$filter": {
"input": {
"$reduce": {
"input": "$keys",
"initialValue": [],
"in": {
"$setUnion": [
"$$value",
"$$this"
]
}
}
},
"cond": {
"$ne": [
"$$this",
"_id"
]
}
}
}
}
}
}
])
Example here

Mongodb aggregation, finding within an array of values

I have a schemea that creates documents using the following structure:
{
"_id" : "2014-07-16:52TEST",
"date" : ISODate("2014-07-16T23:52:59.811Z"),
"name" : "TEST"
"values" : [
[
1405471921000,
0.737121
],
[
1405471922000,
0.737142
],
[
1405471923000,
0.737142
],
[
1405471924000,
0.737142
]
]
}
In the values, the first index is a timestamp. What I'm trying to do is query a specific timestamp to find the closest value ($gte).
I've tried the following aggregate query:
[
{ "$match": {
"values": {
"$elemMatch": { "0": {"$gte": 1405471923000} }
},
"name" : 'TEST'
}},
{ "$project" : {
"name" : 1,
"values" : 1
}},
{ "$unwind": "$values" },
{ "$match": { "values.0": { "$gte": 1405471923000 } } },
{ "$limit" : 1 },
{ "$sort": { "values.0": -1 } },
{ "$group": {
"_id": "$name",
"values": { "$push": "$values" },
}}
]
This seems to work, but it doesn't pull the closest value. It seems to pull anything greater or equal to and the sort doesn't seem to get applied, so it will pull a timestamp that is far in the future.
Any suggestions would be great!
Thank you
There are a couple of things wrong with the approach here even though it is a fair effort. You are right that you need to $sort here, but the problem is that you cannot "sort" on an inner element with an array. In order to get a value that can be sorted you must $unwind the array first as it otherwise will not sort on an array position.
You also certainly do not want $limit in the pipeline. You might be testing this against a single document, but "limit" will actually act on the entire set of documents in the pipeline. So if more than one document was matching your condition then they would be thrown away.
The key thing you want to do here is use $first in your $group stage, which is applied once you have sorted to get the "closest" element that you want.
db.collection.aggregate([
// Documents that have an array element matching the condition
{ "$match": {
"values": { "$elemMatch": { "0": {"$gte": 1405471923000 } } }
}},
// Unwind the top level array
{ "$unwind": "$values" },
// Filter just the elements that match the condition
{ "$match": { "values.0": { "$gte": 1405471923000 } } },
// Take a copy of the inner array
{ "$project": {
"date": 1,
"name": 1,
"values": 1,
"valCopy": "$values"
}},
// Unwind the inner array copy
{ "$unwind": "$valCopy" },
// Filter the inner elements
{ "$match": { "valCopy": { "$gte": 1405471923000 } }},
// Sort on the now "timestamp" values ascending for nearest
{ "$sort": { "valCopy": 1 } },
// Take the "first" values
{ "$group": {
"_id": "$_id",
"date": { "$first": "$date" },
"name": { "$first": "$name" },
"values": { "$first": "$values" },
}},
// Optionally push back to array to match the original structure
{ "$group": {
"_id": "$_id",
"date": { "$first": "$date" },
"name": { "$first": "$name" },
"values": { "$push": "$values" },
}}
])
And this produces your document with just the "nearest" timestamp value matching the original document form:
{
"_id" : "2014-07-16:52TEST",
"date" : ISODate("2014-07-16T23:52:59.811Z"),
"name" : "TEST",
"values" : [
[
1405471923000,
0.737142
]
]
}

Correct query for group by user, per month

I have MongoDB collection that stores documents in this format:
"name" : "Username",
"timeOfError" : ISODate("...")
I'm using this collection to keep track of who got an error and when it occurred.
What I want to do now is create a query that retrieves errors per user, per month or something similar. Something like this:
{
"result": [
{
"_id": "$name",
"errorsPerMonth": [
{
"month": "0",
"errorsThisMonth": 10
},
{
"month": "1",
"errorsThisMonth": 20
}
]
}
]
}
I have tried several different queries, but none have given the desired result. The closest result came from this query:
db.collection.aggregate(
[
{
$group:
{
_id: { $month: "$timeOfError"},
name: { $push: "$name" },
totalErrorsThisMonth: { $sum: 1 }
}
}
]
);
The problem here is that the $push just adds the username for each error. So I get an array with duplicate names.
You need to compound the _id value in $group:
db.collection.aggregate([
{ "$group": {
"_id": {
"name": "$name",
"month": { "$month": "$timeOfError" }
},
"totalErrors": { "$sum": 1 }
}}
])
The _id is essentially the "grouping key", so whatever elements you want to group by need to be a part of that.
If you want a different order then you can change the grouping key precedence:
db.collection.aggregate([
{ "$group": {
"_id": {
"month": { "$month": "$timeOfError" },
"name": "$name"
},
"totalErrors": { "$sum": 1 }
}}
])
Or if you even wanted to or had other conditions in your pipeline with different fields, just add a $sort pipeline stage at the end:
db.collection.aggregate([
{ "$group": {
"_id": {
"month": { "$month": "$timeOfError" },
"name": "$name"
},
"totalErrors": { "$sum": 1 }
}},
{ "$sort": { "_id.name": 1, "_id.month": 1 } }
])
Where you can essentially $sort on whatever you want.

Check if every element in array matches condition

I have a collection of documents:
date: Date
users: [
{ user: 1, group: 1 }
{ user: 5, group: 2 }
]
date: Date
users: [
{ user: 1, group: 1 }
{ user: 3, group: 2 }
]
I would like to query against this collection to find all documents where every user id in my array of users is in another array, [1, 5, 7]. In this example, only the first document matches.
The best solution I've been able to find is to do:
$where: function() {
var ids = [1, 5, 7];
return this.users.every(function(u) {
return ids.indexOf(u.user) !== -1;
});
}
Unfortunately, this seems to hurt performance is stated in the $where docs:
$where evaluates JavaScript and cannot take advantage of indexes.
How can I improve this query?
The query you want is this:
db.collection.find({"users":{"$not":{"$elemMatch":{"user":{$nin:[1,5,7]}}}}})
This says find me all documents that don't have elements that are outside of the list 1,5,7.
I don't know about better, but there are a few different ways to approach this, and depending on the version of MongoDB you have available.
Not too sure if this is your intention or not, but the query as shown will match the first document example because as your logic is implemented you are matching the elements within that document's array that must be contained within the sample array.
So if you actually wanted the document to contain all of those elements, then the $all operator would be the obvious choice:
db.collection.find({ "users.user": { "$all": [ 1, 5, 7 ] } })
But working with the presumption that your logic is actually intended, at least as per suggestion you can "filter" those results by combining with the $in operator so that there are less documents subject to your $where** condition in evaluated JavaScript:
db.collection.find({
"users.user": { "$in": [ 1, 5, 7 ] },
"$where": function() {
var ids = [1, 5, 7];
return this.users.every(function(u) {
return ids.indexOf(u.user) !== -1;
});
}
})
And you get an index though the actual scanned will be multiplied by the number of elements in the arrays from the matched documents, but still better than without the additional filter.
Or even possibly you consider the logical abstraction of the $and operator used in combination with $or and possibly the $size operator depending on your actual array conditions:
db.collection.find({
"$or": [
{ "users.user": { "$all": [ 1, 5, 7 ] } },
{ "users.user": { "$all": [ 1, 5 ] } },
{ "users.user": { "$all": [ 1, 7 ] } },
{ "users": { "$size": 1 }, "users.user": 1 },
{ "users": { "$size": 1 }, "users.user": 5 },
{ "users": { "$size": 1 }, "users.user": 7 }
]
})
So this is a generations of all of the possible permutations of your matching condition, but again performance will likely vary depending on your available installed version.
NOTE: Actually a complete fail in this case as this does something entirely different and in fact results in a logical $in
Alternates are with the aggregation framework, your mileage may vary on which is most efficient due to the number of documents in your collection, one approach with MongoDB 2.6 and upwards:
db.problem.aggregate([
// Match documents that "could" meet the conditions
{ "$match": {
"users.user": { "$in": [ 1, 5, 7 ] }
}},
// Keep your original document and a copy of the array
{ "$project": {
"_id": {
"_id": "$_id",
"date": "$date",
"users": "$users"
},
"users": 1,
}},
// Unwind the array copy
{ "$unwind": "$users" },
// Just keeping the "user" element value
{ "$group": {
"_id": "$_id",
"users": { "$push": "$users.user" }
}},
// Compare to see if all elements are a member of the desired match
{ "$project": {
"match": { "$setEquals": [
{ "$setIntersection": [ "$users", [ 1, 5, 7 ] ] },
"$users"
]}
}},
// Filter out any documents that did not match
{ "$match": { "match": true } },
// Return the original document form
{ "$project": {
"_id": "$_id._id",
"date": "$_id.date",
"users": "$_id.users"
}}
])
So that approach uses some newly introduced set operators in order to compare the contents, though of course you need to restructure the array in order to make the comparison.
As pointed out, there is a direct operator to do this in $setIsSubset which does the equivalent of the combined operators above in a single operator:
db.collection.aggregate([
{ "$match": {
"users.user": { "$in": [ 1,5,7 ] }
}},
{ "$project": {
"_id": {
"_id": "$_id",
"date": "$date",
"users": "$users"
},
"users": 1,
}},
{ "$unwind": "$users" },
{ "$group": {
"_id": "$_id",
"users": { "$push": "$users.user" }
}},
{ "$project": {
"match": { "$setIsSubset": [ "$users", [ 1, 5, 7 ] ] }
}},
{ "$match": { "match": true } },
{ "$project": {
"_id": "$_id._id",
"date": "$_id.date",
"users": "$_id.users"
}}
])
Or with a different approach while still taking advantage of the $size operator from MongoDB 2.6:
db.collection.aggregate([
// Match documents that "could" meet the conditions
{ "$match": {
"users.user": { "$in": [ 1, 5, 7 ] }
}},
// Keep your original document and a copy of the array
// and a note of it's current size
{ "$project": {
"_id": {
"_id": "$_id",
"date": "$date",
"users": "$users"
},
"users": 1,
"size": { "$size": "$users" }
}},
// Unwind the array copy
{ "$unwind": "$users" },
// Filter array contents that do not match
{ "$match": {
"users.user": { "$in": [ 1, 5, 7 ] }
}},
// Count the array elements that did match
{ "$group": {
"_id": "$_id",
"size": { "$first": "$size" },
"count": { "$sum": 1 }
}},
// Compare the original size to the matched count
{ "$project": {
"match": { "$eq": [ "$size", "$count" ] }
}},
// Filter out documents that were not the same
{ "$match": { "match": true } },
// Return the original document form
{ "$project": {
"_id": "$_id._id",
"date": "$_id.date",
"users": "$_id.users"
}}
])
Which of course can still be done, though a little more long winded in versions prior to 2.6:
db.collection.aggregate([
// Match documents that "could" meet the conditions
{ "$match": {
"users.user": { "$in": [ 1, 5, 7 ] }
}},
// Keep your original document and a copy of the array
{ "$project": {
"_id": {
"_id": "$_id",
"date": "$date",
"users": "$users"
},
"users": 1,
}},
// Unwind the array copy
{ "$unwind": "$users" },
// Group it back to get it's original size
{ "$group": {
"_id": "$_id",
"users": { "$push": "$users" },
"size": { "$sum": 1 }
}},
// Unwind the array copy again
{ "$unwind": "$users" },
// Filter array contents that do not match
{ "$match": {
"users.user": { "$in": [ 1, 5, 7 ] }
}},
// Count the array elements that did match
{ "$group": {
"_id": "$_id",
"size": { "$first": "$size" },
"count": { "$sum": 1 }
}},
// Compare the original size to the matched count
{ "$project": {
"match": { "$eq": [ "$size", "$count" ] }
}},
// Filter out documents that were not the same
{ "$match": { "match": true } },
// Return the original document form
{ "$project": {
"_id": "$_id._id",
"date": "$_id.date",
"users": "$_id.users"
}}
])
That generally rounds out the different ways, try them out and see what works best for you. In all likelihood the simple combination of $in with your existing form is probably going to be the best one. But in all cases, make sure you have an index that can be selected:
db.collection.ensureIndex({ "users.user": 1 })
Which is going to give you the best performance as long as you are accessing that in some way, as all the examples here do.
Verdict
I was intrigued by this so ultimately contrived a test case in order to see what had the best performance. So first some test data generation:
var batch = [];
for ( var n = 1; n <= 10000; n++ ) {
var elements = Math.floor(Math.random(10)*10)+1;
var obj = { date: new Date(), users: [] };
for ( var x = 0; x < elements; x++ ) {
var user = Math.floor(Math.random(10)*10)+1,
group = Math.floor(Math.random(10)*10)+1;
obj.users.push({ user: user, group: group });
}
batch.push( obj );
if ( n % 500 == 0 ) {
db.problem.insert( batch );
batch = [];
}
}
With 10000 documents in a collection with random arrays from 1..10 in length holding random values of 1..0, I came to a match count of 430 documents (reduced from 7749 from the $in match ) with the following results (avg):
JavaScript with $in clause: 420ms
Aggregate with $size : 395ms
Aggregate with group array count : 650ms
Aggregate with two set operators : 275ms
Aggregate with $setIsSubset : 250ms
Noting that over the samples done all but the last two had a peak variance of approximately 100ms faster, and the last two both exhibited 220ms response. The largest variations were in the JavaScript query which also exhibited results 100ms slower.
But the point here is relative to hardware, which on my laptop under a VM is not particularly great, but gives an idea.
So the aggregate, and specifically the MongoDB 2.6.1 version with set operators clearly wins on performance with the additional slight gain coming from $setIsSubset as a single operator.
This is particularly interesting given (as indicated by the 2.4 compatible method) the largest cost in this process will be the $unwind statement ( over 100ms avg ), so with the $in selection having a mean around 32ms the rest of the pipeline stages execute in less than 100ms on average. So that gives a relative idea of aggregation versus JavaScript performance.
I just spent a substantial portion of my day trying to implement Asya's solution above with object-comparisons rather than strict equality. So I figured I'd share it here.
Let's say you expanded your question from userIds to full users.
You want to find all documents where every item in its users array is present in another users array: [{user: 1, group: 3}, {user: 2, group: 5},...]
This won't work: db.collection.find({"users":{"$not":{"$elemMatch":{"$nin":[{user: 1, group: 3},{user: 2, group: 5},...]}}}}}) because $nin only works for strict equality. So we need to find a different way of expressing "Not in array" for arrays of objects. And using $where would slow down the query too much.
Solution:
db.collection.find({
"users": {
"$not": {
"$elemMatch": {
// if all of the OR-blocks are true, element is not in array
"$and": [{
// each OR-block == true if element != that user
"$or": [
"user": { "ne": 1 },
"group": { "ne": 3 }
]
}, {
"$or": [
"user": { "ne": 2 },
"group": { "ne": 5 }
]
}, {
// more users...
}]
}
}
}
})
To round out the logic: $elemMatch matches all documents that have a user not in the array. So $not will match all documents that have all of the users in the array.

MongoDB return two object for every group

I want to get two objects $first and $last after grouping. Is it possible?
Something like this, but this is not working:
{ "$group": {
"_id": "type",
"values": [{
"time": { "$first": "$time" },
"value": { "$first": "$value" }
},
{
"time": { "$last": "$time" },
"value": { "$last": "$value" }
}]
}
}
In order to get the $first and $last values from an array with the aggregation framework, you need to use $unwind first to "de-normalize" the array as individual documents. There is also another trick to put those back in an array.
Assuming a document like this
{
"type": "abc",
"values": [
{ "time": ISODate("2014-06-12T22:35:42.260Z"), "value": "ZZZ" },
{ "time": ISODate("2014-06-12T22:36:45.921Z"), "value": "KKK" },
{ "time": ISODate("2014-06-12T22:37:18.237Z"), "value": "AAA" }
]
}
And assuming that your array is already sorted your would do:
If you do not care about the results being in an array just $unwind and $group:
db.junk.aggregate([
{ "$unwind": "$values" },
{ "$group": {
"_id": "$type",
"ftime": { "$first": "$values.time" },
"fvalue": { "$first": "$values.value" },
"ltime": { "$last": "$values.time" },
"lvalue": { "$last": "$values.value" },
}}
])
For those results in array then there is a trick to it:
db.collection.aggregate([
{ "$unwind": "$values" },
{ "$project": {
"type": 1,
"values": 1,
"indicator": { "$literal": ["first", "last"] }
}},
{ "$group": {
"_id": "$type",
"ftime": { "$first": "$values.time" },
"fvalue": { "$first": "$values.value" },
"ltime": { "$last": "$values.time" },
"lvalue": { "$last": "$values.value" },
"indicator": { "$first": "$indicator" }
}},
{ "$unwind": "$indicator" },
{ "$project": {
"values": {
"time": {
"$cond": [
{ "$eq": [ "$indicator", "first" ] },
"$ftime",
"$ltime"
]
},
"value": {
"$cond": [
{ "$eq": [ "$indicator", "first" ] },
"$fvalue",
"$lvalue"
]
}
}
}},
{ "$group": {
"_id": "$_id",
"values": { "$push": "$values" }
}}
])
If your array is not sorted place an additional $sort stage before the very first $group to make sure your items are in the order you want them to be evaluated by $first and $last. A logical order where is by the "time" field, so:
{ "$sort": { "type": 1, "values.time": 1 } }
The $literal declares an array to identify the values of "first" and "last" which are later "unwound" to create two copies of each grouped document. These are then evaluated using the $cond operator to re-assign to a single field for "values" which is finally push back into an array using $push.
Remember to allways try to $match first in the pipeline in order to reduce the number of documents you are working on to what you reasonable want. You pretty much never want to do this over whole collections, especially when you are using $unwind on arrays.
Just as a final note $literal is introduced/exposed in MongoDB 2.6 and greater versions. For prior versions you can interchange that with the undocumented $const.