I'm trying to learn reactive programming and as a first "real" application I've settled on a simple IRC client with RxJava and RxNetty.
I'm currently stuck on retrying another server, if the first one fails. So, I have an Observable<Server>, which consist of the servers of a network. It can be setup using .repeat(), so it repeats the servers indefinitely. Now, how do I make this a blocking one, so that only one is being used at a time and it would go to the next one only if RxClient::connect fails or the connection timeouts?
While other solution would be to use a domain, which redirects me to different server each time I connect and just use .retry(), I'm interested in solving the problem in the reactive way.
Connecting to all the servers (without .repeat()) works fine, but that's not what I want:
servers
.map(x -> RxNetty.createTcpClient(
x.getAddress(),
x.getPort(),
PipelineConfigurators.stringMessageConfigurator()))
.flatMap(RxClient::connect)
.onErrorFlatMap(x -> Observable.empty())
.subscribe(this::handleConnection);
How about using concatMap instead of flatMap. The next server will thus only be used if RxClient::connect completes or errors:
servers
.map(x -> RxNetty.createTcpClient(
x.getAddress(),
x.getPort(),
PipelineConfigurators.stringMessageConfigurator()))
.concatMap(RxClient::connect)
.onErrorFlatMap(x -> Observable.empty())
.subscribe(this::handleConnection);
Related
I have a complex problem and I can't figure out which one is the best solution to solve it.
this is the scenario:
I have N servers under a single load balancer and a Database.
All the servers connect to the database
All the servers run the same identical application
I want to implement a Cache in order to decrease the response time and reduce to the minimum the HTTP calls Server -> Database
I implemented it and works like a charm on a single server...but I need to find a mechanism to update all the other caches in the other servers when the data is not valid anymore.
example:
I have server A and server B, both have their own cache.
At the first request from the outside, for example, get user information, replies server A.
his cache is empty so he needs to get the information from the database.
the second request goes to B, also here server B cache is empty, so he needs to get information from the database.
the third request, again on server A, now the data is in the cache, it replies immediately without database request.
the fourth request, on server B, is a write request (for example change user name), server B can make the changes on the database and update his own cache, invalidating the old user.
but server A still has the old invalid user.
So I need a mechanism for server B to communicate to server A (or N other servers) to invalidate/update the data in the cache.
whats is the best way to do this, in scala play framework?
Also, consider that in the future servers can be in geo-redundancy, so in different geographical locations, in a different network, served by a different ISP.
would be great also to update all the other caches when one user is loaded (one server request from database update all the servers caches), this way all the servers are ready for future request.
Hope I have been clear.
Thanks
Since you're using Play, which under the hood, already uses Akka, I suggest using Akka Cluster Sharding. With this, the instances of your Play service would form a cluster (including failure detection, etc.) at startup, and organize between themselves which instance owns a particular user's information.
So proceeding through your requests, the first request to GET /userinfo/:uid hits server A. The request handler hashes uid (e.g. with murmur3: consistent hashing is important) and resolves it to, e.g., shard 27. Since the instances started, this is the first time we've had a request involving a user in shard 27, so shard 27 is created and let's say it gets owned by server A. We send a message (e.g. GetUserInfoFor(uid)) to a new UserInfoActor which loads the required data from the DB, stores it in its state, and replies. The Play API handler receives the reply and generates a response to the HTTP request.
For the second request, it's for the same uid, but hits server B. The handler resolves it to shard 27 and its cluster sharding knows that A owns that shard, so it sends a message to the UserInfoActor on A for that uid which has the data in memory. It replies with the info and the Play API handler generates a response to the HTTP request from the reply.
In this way, all subsequent requests (e.g. the third, the same GET hitting server A) for the user info will not touch the DB, no matter which server they hit.
For the fourth request, which let's say is POST /userinfo/:uid and hits server B, the request handler again hashes the uid to shard 27 but this time, we send, e.g., an UpdateUserInfoFor(uid, newInfo) message to that UserInfoActor on server A. The actor receives the message, updates the DB, updates its in-memory user info and replies (either something simple like Done or the new info). The request handler generates a response from that reply.
This works really well: I've personally seen systems using cluster sharding keep terabytes in memory and operate with consistent single-digit millisecond latency for streaming analytics with interactive queries. Servers crash, and the actors running on the servers get rebalanced to surviving instances.
It's important to note that anything matching your requirements is a distributed system and you're requiring strong consistency, i.e. you're requiring that it be unavailable under a network partition (if B is unable to communicate an update to A, it has no choice but to fail the request). Once you start talking about geo-redundancy and multiple ISPs, you're going to see partitions pretty regularly. The only way to get availability under a network partition is to relax the consistency demand and accept that sometimes the GET will not incorporate the latest PUT/POST/DELETE.
This is probably not something that you want to build yourself. But there are plenty of distributed caches out there that you can use, such as Ehcache or InfiniSpan. I suggest you look into one of those two.
Does ZK need some sort of delay after a successful write, before the data can be read back, in case of a standalone instance (no peers)?
I have a test in which I create 1000 records using 1000 rest calls to a service, and then try to read them all back together. It works most of the time, but I seem to intermittently run into an issue where I only seem to get back a partial result (say 995 records).
My understanding was that a sync() was only required for consistency in case of multiple peers; is this not the case? Is there some specific delay that goes in beyond that, and if so, is there an upper limit to it?
P.S.: Since I'm using rest calls, perhaps the ZK clients are different instances; is this the problem? Would a sync (or a fixed sleep interval) fix it if so?
Please look at this scotty app (it's taken directly from this old answer from 2014):
import Web.Scotty
import Database.MongoDB
import qualified Data.Text.Lazy as T
import Control.Monad.IO.Class
runQuery :: Pipe -> Query -> IO [Document]
runQuery pipe query = access pipe master "nutrition" (find query >>= rest)
main = do
pipe <- connect $ host "127.0.0.1"
scotty 3000 $ do
get "/" $ do
res <- liftIO $ runQuery pipe (select [] "stock_foods")
text $ T.pack $ show res
You see how the the database connection (pipe) is created only once when the web app launches. Subsequently, thousands if not millions of visitors will hit the "/" route simultaneously and read from the database using the same connection (pipe).
I have questions about how to properly use Database.MongoDB:
Is this the proper way of setting things up? As opposed to creating a database connection for every visit to "/". In this latter case, we could have millions of connections at once. Is that discouraged? What are the advantages and drawbacks of such an approach?
In the app above, what happens if the database connection is lost for some reason and needs to be created again? How would you recover from that?
What about authentication with the auth function? Should the auth function only be called once after creating the pipe, or should it be called on every hit to "/"?
Some say that I'm supposed to use a pool (Data.Pool). It looks like that would only help limit the number of visitors using the same database connection simultaneously. But why would I want to do that? Doesn't the MongoDB connection have a built-in support for simultaneous usages?
Even if you create connection per client you won't be able to create too many of them. You will hit ulimit. Once you hit that ulimit the client that hit this ulimit will get a runtime error.
The reason it doesn't make sense is because mongodb server will be spending too much time polling all those connections and it will have only as many meaningful workers as many CPUs your db server has.
One connection is not a bad idea, because mongodb is designed to send several requests and wait for responses. So, it will utilize as much resources as your mongodb can have with only one limitation - you have only one pipe for writing, and if it closes accidentally you will need to recreate this pipe yourself.
So, it makes more sense to have a pool of connections. It doesn't need to be big. I had an app which authenticates users and gives them tokens. With 2500 concurrent users per second it only had 3-4 concurrent connections to the database.
Here are the benefits connection pool gives you:
If you hit pool connection limit you will be waiting for the next available connection and will not get runtime error. So, you app will wait a little bit instead of rejecting your client.
Pool will be recreating connections for you. You can configure pool to close excess of connections and create more up until certain limit as you need them. If you connection breaks while you read from it or write to it, then you just take another connection from the pool. If you don't return that broken connection to the pool pool will create another connection for you.
If the database connection is closed then: mongodb listener on this connection will exit printing a error message on your terminal, your app will receive an IO error. In order to handle this error you will need to create another connection and try again. When it comes to handling this situation you understand that it's easier to use a db pool. Because eventually you solution to this will resemble connection pool very much.
I do auth once as part of opening a connection. If you need to auth another user later you can always do it.
Yes, mongodb handles simultaneous usage, but like I said it gives only one pipe to write and it soon becomes a bottle neck. If you create at least as many connections as your mongodb server can afford threads for handling them(CPU count), then they will be going at full speed.
If I missed something feel free to ask for clarifications.
Thank you for your question.
What you really want is a database connection pool. Take a look at the code from this other answer.
Instead of auth, you can use withMongoDBPool to if your MongoDB server is in secure mode.
Is this the proper way of setting things up? As opposed to creating a database connection for every visit to "/". In this latter case, we could have millions of connections at once. Is that discouraged? What are the advantages and drawbacks of such an approach?
You do not want to open one connection and then use it. The HTTP server you are using, which underpins Scotty, is called Warp. Warp has a multi-core, multi-green-thread design. You are allowed to share the same connection across all threads, since Database.MongoDB says outright that connections are thread-safe, but what will happen is that when one thread is blocked waiting for a response (the MongoDB protocol follows a simple request-response design) all threads in your web service will block. This is unfortunate.
We can instead create a connection on every request. This trivially solves the problem of one thread's blocking another but leads to its own share of problems. The overhead of setting up a TCP connection, while not substantial, is also not zero. Recall that every time we want to open or close a socket we have to jump from the user to the kernel, wait for the kernel to update its internal data structures, and then jump back (a context switch). We also have to deal with the TCP handshake and goodbyes. We would also, under high load, run out file descriptors or memory.
It would be nice if we had a solution somewhere in between. The solution should be
Thread-safe
Let us max-bound the number of connections so we don't exhaust the finite resources of the operating system
Quick
Share connections across threads under normal load
Create new connections as we experience increased load
Allow us to clean up resources (like closing a handle) as connections are deleted under reduced load
Hopefully already written and battle-tested by other production systems
It is this exactly problem that resource-pool tackles.
Some say that I'm supposed to use a pool (Data.Pool). It looks like that would only help limit the number of visitors using the same database connection simultaneously. But why would I want to do that? Doesn't the MongoDB connection have a built-in support for simultaneous usages?
It is unclear what you mean by simultaneous usages. There is one interpretation I can guess at: you mean something like HTTP/2, which has pipelining built into the protocol.
standard picture of pipelining http://research.worksap.com/wp-content/uploads/2015/08/pipeline.png
Above we see the client making multiple requests to the server, without waiting for a response, and then the client can receive responses back in some order. (Time flows from the top to the bottom.) This MongoDB does not have. This is a fairly complicated protocol design that is not that much better than just asking your clients to use connection pools. And MongoDB is not alone here: the simple request-and-response design is something that Postgres, MySQL, SQL Server, and most other databases have settled on.
And: it is true that connection pool limits the load you can take as a web service before all threads are blocked and your user just sees a loading bar. But this problem would exist in any of the three scenarios (connection pooling, one shared connection, one connection per request)! The computer has finite resources, and at some point something will collapse under sufficient load. Connection pooling's advantages are that it scales gracefully right up until the point it cannot. The correct solution to handling more traffic is to increase the number of computers; we should not avoid pooling simply due to this problem.
In the app above, what happens if the database connection is lost for some reason and needs to be created again? How would you recover from that?
I believe these kinds of what-if's are outside the scope of Stack Overflow and deserve no better answer than "try it and see." Buuuuuuut given that the server terminates the connection, I can take a stab at what might happen: assuming Warp forks a green thread for each request (which I think it does), each thread will experience an unchecked IOException as it tries to write to the closed TCP connection. Warp would catch this exception and serve it as an HTTP 500, hopefully writing something useful to the logs also. Assuming a single-connection model like you have now, you could either do something clever (but high in lines of code) where you "reboot" your main function and set up a second connection. Something I do for hobby projects: should anything odd occur, like a dropped connection, I ask my supervisor process (like systemd) to watch the logs and restart the web service. Though clearly not a great solution for a production, money-makin' website, it works well enough for small apps.
What about authentication with the auth function? Should the auth function only be called once after creating the pipe, or should it be called on every hit to "/"?
It should be called once after creating the connection. MongoDB authentication is per-connection. You can see an example here of how the db.auth() command mutates the MongoDB server's data structures corresponding to the current client connection.
Programing Erlang says in chapter 17.2
Erlang sockets can be opened in one of three modes: active, active once, or passive
...
You might think that using passive mode for all servers is the correct approach. Unfortunately, when we’re in passive mode, we can wait for the data from only one socket. This is useless for writing servers that must wait for data from multiple sockets.
I just could not understand the sentence This is useless for writing servers that must wait for data from multiple sockets
In my opinion, if I can not convince the clients, I should not use the active mode.
But I can make a Parallel Server with passive mode for each client(one Erlng process for one client).
Maybe it says that a Erlang process for multiple sockets. But I can not imagine the example of this case.
Could you give me more information about it?
Thank you!
Unfortunately, when we’re in passive mode, we can wait for the data from only one socket. This is useless for writing servers that must wait for data from multiple sockets.
I'd say that's not a very compelling argument against passive sockets. In almost all cases, you'll have one Erlang process per socket, and this problem doesn't arise.
A better argument against passive sockets is that while waiting for data (using gen_tcp:recv), the process cannot receive messages from other Erlang processes. Those messages could be the result of a computation, a request to shut down, etc.
That is, when using active or active-once mode, your receive would look something like this:
receive
{tcp, Socket, Data} ->
%% do something with Data
%% then reactivate the socket
ok = inet:setopts(Socket, [{active,once}]),
loop(Socket);
{result, Result} ->
%% send Result back to socket
ok = gen_tcp:send(Socket, Result),
loop(Socket);
stop ->
%% stop this process
exit(normal)
end
Using this code, whichever event arrives first will be handled first, regardless of whether it's incoming data on the socket or a message from another Erlang process.
If on the other hand you were using gen_tcp:recv to receive the data, you would block on that call, unable to react to {result, Result} and stop in a timely manner.
one connection send many request to server
How to process request concurrently.
Please use a simple example like timeserver or echoserver in netty.io
to illustrate the operation.
One way I could find out is to create a separate threaded handler that will be called as in a producer/consumer way.
The producer will be your "network" handler, giving message to the consumers, therefore not waiting for any wanswear and being able then to proceed with the next request.
The consumer will be your "business" handler, one per connection but possibly multi-threaded, consuming with multiple instances the messages and being able to answer using the Netty's context from the connection from which it is attached.
Another option for the consumer would be to have only one handler, still multi-threaded, but then message will come in with the original Netty's Context such that it can answear to the client, whatever the connection attached.
But the difficulties will come soon:
How to deal with an answear among several requests on client side: let say the client sends 3 requests A, B and C and the answears will come back, due to speed of the Business handler, as C, A, B... You have to deal with it, and knowing for which request the answer is.
You have to ensure all the ways the context given in parameter is still valid (channel active), if you don't want to have too many errors.
Perhaps the best way would be to however handle your request in order (as Netty does), and keep the answear's action as quick as possible.