Count the number of queries from an application to mongodb - mongodb

I'm interested in counting how many roundtrips to the database from my web application I'm doing during the life of a query. Not counting connections, since they are pooled and reused, but actual queries (find, insert, update, ...)
Before I start adding profiling probes in my code, is there anything, driver side or server side, that could give this sort of information?

Yes, you should take a look at system profile in MongoDB. You can set it to log all database operations to a special collection withing MongoDB:
http://docs.mongodb.org/manual/tutorial/manage-the-database-profiler/
Analyze Performance of Database Operations
The database profiler collects fine grained data about MongoDB write
operations, cursors, database commands on a running mongod instance.
You can enable profiling on a per-database or per-instance basis. The
profiling level is also configurable when enabling profiling.
The database profiler writes all the data it collects to the
system.profile collection, which is a capped collection. See Database
Profiler Output for overview of the data in the system.profile
documents created by the profiler.
It does have some impact on performance, so I'd be careful anytime you are turning it on, but it's very useful when you are trying to determine exactly what's going on underneath the covers in your application. Particularly helpful when using a framework or ORM that may take a simple function call and produce large numbers of individual queries/updates/deletes.

Related

MongoDB Atlas Profiler: What is "Num Yields"?

In the MongoDB Atlas dashboard query profiler, there's a Num Yields field. What is it?
Screenshot
From Database Profiler Output documentation page:
The number of times the operation yielded to allow other operations to complete. Typically, operations yield when they need access to data that MongoDB has not yet fully read into memory. This allows other operations that have data in memory to complete while MongoDB reads in data for the yielding operation. For more information, see the FAQ on when operations yield.
Basically most database operations in MongoDB has a "yield point", i.e. the point that it can yield control to other operations. This is usually waiting for data to be loaded from disk.
So in short, if you see a high number of yields, that means the query spent a lot of time waiting for data to be loaded from disk. The cause is typically:
A query returning or processing a large amount of data. If this is the cause, ensure the query only returns what you need. However this may not be avoidable in some use case (e.g. analytical).
Inefficient query that is not utilizing proper indexing, so the server was forced to load the full documents from disk all the time. If this is the cause, ensure that you have created proper indexes backing the query.
Small RAM in the server, so the data must be loaded from disk all the time. If none of the above, then the server is simply too small for the task at hand. Consider upgrading the server's hardware.
Note that a high number of yield is not necessarily bad if you don't see it all the time. However, it's certainly not good if you see this on a query that you run regularly.

How long will a mongo internal cache sustain?

I would like to know how long a mongo internal cache would sustain. I have a scenario in which i have some one million records and i have to perform a search on them using the mongo-java driver.
The initial search takes a lot of time (nearly one minute) where as the consecutive searches of same query reduces the computation time (to few seconds) due to mongo's internal caching mechanism.
But I do not know how long this cache would sustain, like is it until the system reboots or until the collection undergoes any write operation or things like that.
Any help in understanding this is appreciated!
PS:
Regarding the fields with which search is performed, some are indexed
and some are not.
Mongo version used 2.6.1
It will depend on a lot of factors, but the most prominent are the amount of memory in the server and how active the server is as MongoDB leaves much of the caching to the OS (by MMAP'ing files).
You need to take a long hard look at your log files for the initial query and try to figure out why it takes nearly a minute.
In most cases there is some internal cache invalidation mechanism that will drop your cached query internal record when write operation occurs. It is the simplest describing of process. Just from my own expirience.
But, as mentioned earlier, there are many factors besides simple invalidation that can have place.
MongoDB automatically uses all free memory on the machine as its cache.It would be better to use MongoDB 3.0+ versions because it comes with two Storage Engines MMAP and WiredTiger.
The major difference between these two is that whenever you perform a write operation in MMAP then the whole database is going to lock and whereas the locking mechanism is upto document level in WiredTiger.
If you are using MongoDB 2.6 version then you can also check the query performance and execution time taking to execute the query by explain() method and in version 3.0+ executionStats() in DB Shell Commands.
You need to index on a particular field which you will query to get results faster. A single collection cannot have more than 64 indexes. The more index you use in a collection there is performance impact in write/update operations.

does mongodb have the properties such as trigger and procedure in a relational database?

as the title suggests, include out the map-reduce framework
if i want to trigger an event to run a consistency check or security operations before a record is inserted, how can i do that with MongoDB?
MongoDB does not support triggers, but people have created solutions around them, mostly using the oplog, though this will only help you if you are running with replica sets, as the oplog is a capped collection that keeps track of data changes for the purposes of replication.
For a nodejs solution see: https://www.npmjs.org/package/mongo-watch or see an earlier SO thread: How to listen for changes to a MongoDB collection?
If you are concerned with consistency, read about write concern in mongoDB. http://docs.mongodb.org/manual/core/write-concern/ You can be as relaxed or as strict as you want by setting insert write concern levels, from fire and hope to getting an acknowledgement from all members of the replica set.
So, if you want to run a consistency check before inserting data, you probably will have to move that logic to the client application and set your write concern level to a level that will ensure consistency.
MongoDb does not have triggers or stored procedures. While there are solutions that some have used to try to emulate the behavior, as it is not a built-in feature, you'll need to decide whether the solutions are effective for you. Searching for "triggers and mongodb" should find dozens. All depend on the oplog and replicas.
But, given the nature of MongoDb and a typical 3 tier architecture, I would expect that at the point of data insertion, which could be on a web server for example, you would run, on the web server, the necessary consistency and security checks. You wouldn't allow a client such as a mobile application to directly set data into the database collection without some checks.
Many drivers for MongoDb and extended libraries have validation and consistency checks built in already, so there is less to do. Using unique indexes for some fields can also provide a level of consistency that you cannot do from the driver alone. Look at calls like findAndModify which make atomic updates.

creating a different database for each collection in MongoDB 2.2

MongoDB 2.2 has a write lock per database as opposed to a global write lock on the server in previous versions. So would it be ok if i store each collection in a separate database to effectively have a write lock per collection.(This will make it look like MyISAM's table level locking). Is this approach faulty?
There's a key limitation to the locking and that is the local database. That database includes a the oplog collection which is used for replication.
If you're running in production, you should be running with Replica Sets. If you're running with Replica Sets, you need to be aware of the write lock effect on that database.
Breaking out your 10 collections into 10 DBs is useless if they all block waiting for the oplog.
Before taking a large step to re-write, please ensure that the oplog will not cause issues.
Also, be aware that MongoDB implements DB-level security. If you're using any security features, you are now creating more DBs to secure.
Yes that will work, 10gen actually offers this as an option in their talks on locking.
I probably isolate every collection, though. Most databases seem to have 2-5 high activity collections. For the sake of simplicity it's probably better to keep the low activity collections grouped in one DB and put high activity collections in their own databases.

MongoDB with redis

Can anyone give example use cases of when you would benefit from using Redis and MongoDB in conjunction with each other?
Redis and MongoDB can be used together with good results. A company well-known for running MongoDB and Redis (along with MySQL and Sphinx) is Craiglist. See this presentation from Jeremy Zawodny.
MongoDB is interesting for persistent, document oriented, data indexed in various ways. Redis is more interesting for volatile data, or latency sensitive semi-persistent data.
Here are a few examples of concrete usage of Redis on top of MongoDB.
Pre-2.2 MongoDB does not have yet an expiration mechanism. Capped collections cannot really be used to implement a real TTL. Redis has a TTL-based expiration mechanism, making it convenient to store volatile data. For instance, user sessions are commonly stored in Redis, while user data will be stored and indexed in MongoDB. Note that MongoDB 2.2 has introduced a low accuracy expiration mechanism at the collection level (to be used for purging data for instance).
Redis provides a convenient set datatype and its associated operations (union, intersection, difference on multiple sets, etc ...). It is quite easy to implement a basic faceted search or tagging engine on top of this feature, which is an interesting addition to MongoDB more traditional indexing capabilities.
Redis supports efficient blocking pop operations on lists. This can be used to implement an ad-hoc distributed queuing system. It is more flexible than MongoDB tailable cursors IMO, since a backend application can listen to several queues with a timeout, transfer items to another queue atomically, etc ... If the application requires some queuing, it makes sense to store the queue in Redis, and keep the persistent functional data in MongoDB.
Redis also offers a pub/sub mechanism. In a distributed application, an event propagation system may be useful. This is again an excellent use case for Redis, while the persistent data are kept in MongoDB.
Because it is much easier to design a data model with MongoDB than with Redis (Redis is more low-level), it is interesting to benefit from the flexibility of MongoDB for main persistent data, and from the extra features provided by Redis (low latency, item expiration, queues, pub/sub, atomic blocks, etc ...). It is indeed a good combination.
Please note you should never run a Redis and MongoDB server on the same machine. MongoDB memory is designed to be swapped out, Redis is not. If MongoDB triggers some swapping activity, the performance of Redis will be catastrophic. They should be isolated on different nodes.
Obviously there are far more differences than this, but for an extremely high overview:
For use-cases:
Redis is often used as a caching layer or shared whiteboard for distributed computation.
MongoDB is often used as a swap-out replacement for traditional SQL databases.
Technically:
Redis is an in-memory db with disk persistence (the whole db needs to fit in RAM).
MongoDB is a disk-backed db which only needs enough RAM for the indexes.
There is some overlap, but it is extremely common to use both. Here's why:
MongoDB can store more data cheaper.
Redis is faster for the entire dataset.
MongoDB's culture is "store it all, figure out access patterns later"
Redis's culture is "carefully consider how you'll access data, then store"
Both have open source tools that depend on them, many of which are used together.
Redis can be used as a replacement for a traditional datastore, but it's most often used with another normal "long" data store, like Mongo, Postgresql, MySQL, etc.
Redis works excellently with MongoDB as a caching server. Here is what happens.
Anytime that mongoose issues a cache query, it will first go over to the cache server.
The cache server will check to see if that exact query has ever been issued before.
If it hasn’t then the cache server will take the query, send it over to mongodb and Mongo will execute the query.
We will then take the result of that query, it then goes back to the cache server, the cache server will store the result of the query on itself.
It will say anytime I execute that query, I get this response and so its going to maintain a record between queries that are issued and responses that come back from those queries.
The cache server will take the response and send it back to mongoose, mongoose will give it to express and it eventually ends up inside the application.
Anytime that the same exact query is issued again, mongoose will send the same query to the cache server, but if the cache server sees that this query was issued before it will not send the query onto mongodb, instead its going to take the response to the query it got the last time and immediately send it back over to mongoose. There is no indices here, no full table scan, nothing.
We are doing a simple lookup to say has this query been executed? Yes? Okay, take the request and send it back immediately and don’t send anything to mongo.
We have the mongoose server, the cache server (Redis) and Mongodb.
On the cache server there might be a datastore with key value type of data store where all the keys are some type of query issued before and the value the result of that query.
So maybe we are looking up a bunch of blogposts by _id.
So maybe the keys in here are the _id of the records we have looked up before.
So lets imagine that mongoose issues a new query where it tries to find a blogpost with _id of 123, the query flows into the cache server, the cache server will check to see if it has a result for any query that was looking for an _id of 123.
If it does not exist in the cache server, this query is taken and sent on to the mongodb instance. Mongodb will execute the query, get a response and send it back.
This result is sent back over to the cache server who takes that result and immediately sends it back to mongoose so we get as fast a response as possible.
Right after that, the cache server will also take the query issued, and add that on to its collection of queries that have been issued and take the result of the query and store it right up against the query.
So we can imagine that in the future we issue the same query again, it hits the cache server, it looks at all the keys it has and says oh I already found that blogpost, it doesn’t reach out to mongo, it just takes the result of the query and sends it directly to mongoose.
We are not doing complex query logic, no indices, nothing like that. Its as fast as possible. Its a simple key value lookup.
Thats an overview of how the cache server (Redis) works with MongoDB.
Now there are other concerns. Are we caching data forever? How do we update records?
We don’t want to always be storing data in the cache and be reading from the cache.
The cache server is not used for any write actions. The cache layer is only used for reading data. If we ever write data, writing will always go over to the mongodb instance and we need to ensure that anytime we write data we clear any data stored on the cache server that is related to the record we just updated in Mongo.