Differentiating from WhittakerM function and substitution - matlab

I'm trying to differentiate WhittakerM function.
To solve the WhittakerM equation we have:
dsolve( 'D2y+(-1/4+Landa/r+(1/4-(L+1/2)^2)/r^2)*y=0' ,'r')
C1*WhittakerM(Landa,L+1/2,r)+C2*WhittakerW(Landa,L+1/2,r)
from the boundary condition I only need WhittakerM(Landa,L+1/2,r)/rthat 1/ris added for the condition of the problem. I'm trying to defferentiate it then substitute in some points, but there are some errorin subsand diff.
Landa=1;L=0; % # for simplicity
R1=inline('WhittakerM(Landa,L+1/2,r)/r','r');
Rp1=diff(R1,r);
r=1:0.01:20;
R1sub=eval(R1,r);
Rp1sub=eval(Rp1,r);
Do u have any idea?

Regardless of the errors above (honestly I do not fully understand what you are trying to achieve with the substitution), using the symbolic toolbox might be a good start here:
syms r
%defines a symbolic function
R1(r)=whittakerM(landa,l+1/2,r)/r
%differentiate
Rp1=diff(R1,r);
%evaluate
Rp1_e=Rp1(1:0.01:20)

Related

MATLAB Initial Objective Function Evaluation Error

I am trying to create a plot in MATLAB by iterating over values of a constant (A) with respect to a system of equations. My code is pasted below:
function F=Func1(X, A)
%X(1) is c
%X(2) is h
%X(3) is lambda
%A is technology (some constant)
%a is alpha
a=1;
F(1)=1/X(1)-X(3)
F(2)=X(3)*(X(1)-A*X(2)^a)
F(3)=-1/(24-X(2))-X(3)*A*a*X(2)^(a-1)
clear, clc
init_guess=[0,0,0]
for countA=1:0.01:10
result(countA,:)=[countA,fsolve(#Func1, init_guess)]
end
display('The Loop Has Ended')
display(result)
%plot(result(:,1),result(:,2))
The first set of code, I am defining the set of equations I am attempting to solve. In the second set of lines, I am trying to write a loop which iterates through the values of A that I want, [1,10] with an increment of 0.01. Right now, I am just trying to get my loop code to work, but I keep on getting this error:
"Failure in initial objective function evaluation. FSOLVE cannot continue."
I am not sure why this is the case. From what I understand, this is the result of my initial guess matrix not being the right size, but I believe it should be of size 3, as I am solving for three variables. Additionally, I'm fairly confident there's nothing wrong with how I'm referencing my Func1 code in my Loop code.
Any advice you all could provide would be sincerely appreciated. I've only been working on MATLAB for a few days, so if this is a rather trivial fix, pardon my ignorance. Thanks.
Couple of issues with your code:
1/X(1) in function Func1 is prone to the division by zero miscalculations. I would change it to 1/(X(1)+eps).
If countA is incrementing by 0.01, it cannot be used as an index for result. Perhaps introduce an index ind to increment.
I have included your constant A within the function to clarify what optimization variables are.
Here is the updated code. I don't know if the results are reasonable or not:
init_guess=[0,0,0];
ind = 1;
for countA=1:0.01:10
result(ind,:)=[countA, fsolve(#(X) Func1(X,countA), init_guess)];
ind = ind+1;
end
display('The Loop Has Ended')
display(result)
%plot(result(:,1),result(:,2))
function F=Func1(X,A)
%X(1) is c
%X(2) is h
%X(3) is lambda
%A is technology (some constant)
%a is alpha
a=1;
F(1)=1/(X(1)+eps)-X(3);
F(2)=X(3)*(X(1)-A*X(2)^a);
F(3)=-1/(24-X(2))-X(3)*A*a*X(2)^(a-1);
end

Mixed Integer Quadratic Programming with linear constraints in Matlab calling Gurobi

I have some troubles to understand how to implement the following MIQP (Mixed Integer Quadratic Programming) with linear constraints in Matlab calling Gurobi.
Let me explain in a schematic way my setting.
(1) x is the unknown and it is a column vector with size 225x1.
(2) The objective function (which should be minimised wrto x) looks like
which can be rewritten as
I have a Matlab script computing alpha, Q,c (Q,c sparse) when some_known_parameters1 are given:
function [alpha, Q,c]=matrix_objective_function(some_known_parameters1)
%...
end
(3) The constraints are linear in x, include equalities and inequalities, and are written in the form
I have a Matlab script computing Aeq,beq,Aineq,bineq (Aeq,Aineq sparse) when some_known_parameters2 is given:
function [Aeq,beq,Aineq,bineq]=constraints(some_known_parameters2)
%...
end
(4) Some components of x are restricted to be in {0,1}. I have a Matlab script producing a string of letters B (binary), C (continous) when some_known_parameters3 is given:
function type=binary_continuous(some_known_parameters3)
%...
end
Now, I need to put together (1)-(4) using Gurobi. I am struggling to understand how. I found this example but it looks very cryptic to me. Below I report some lines I have attempted to write, but they are incomplete and I would like your help to complete them.
clear
rng default
%Define some_known_parameters1,
some_known_parameters2,some_known_parameters3 [...]
%1) generate alpha,Q,c,Aeq,beq,Aineq,bineq,type with Q,c,Aeq, Aineq sparse
[alpha, Q,c]=matrix_objective_function(some_known_parameters1)
[Aeq,beq,Aineq,bineq]=constraints(some_known_parameters2)
type=binary_continuous(some_known_parameters3)
%2) Set up Gurobi
clear model;
model.A=[Aineq; Aeq];
model.rhs=full([bineq(:); beq(:)]);
model.sense=[repmat('<', size(Aineq,1),1); repmat('=', size(Aeq,1),1)];
model.Q=Q; %not sure?
model.alpha=alpha; %not sure?
model.c=c; %not sure?
model.vtype=type;
result=gurobi(model); %how do I get just the objective function here without the minimiser?
Questions:
(1) I'm not sure about
model.Q=Q;
model.alpha=alpha;
model.c=c;
I'm just trying to set the matrices of the objective function using the letters provided here but it gives me error. The example here seems to me doing
model.Q=Q;
model.obj=c;
But then how do I set alpha? Is it ignoring it because it does not change the set of solutions?
(2) How do I get as output stored in a matrix just the minimum value of the objective function without the corresponding x?
(1) You're right, there's no need to pass the constant alpha since it doesn't affect the optimal solution. Gurobi's MATLAB API only accepts sparse matrices. Furthermore model.obj is always the c vector in the problem statement:
model.Q = sparse(Q);
model.obj = c;
(2) To get the optimal objective value, you first need to pass your model to gurobi and solve it. Then you can access it via the objval attribute:
results = gurobi(model);
val = results.objval + alpha

matlab plot vectors must be the same lengths

I am writing a program regarding solving the following boundary value problem using shooting-bisection method:
y''-y+x=0, y(0)=y(1)=0.
I first convert this to a system of first order equations, set
y'=z
then I let dydt represent the vector (y',z'), and come up with the script file:
function dydt=shoot(t,y)
dydt=[y(2);y(1)-t]
end
With this, I then came up with the following code:
clear
clc
a=0;
b=1;
alpha=0;
beta=0;
s(1)=(beta-alpha)/(b-a);
s(2)=-1
[G,Y]=ode113('shoot',[a b],[alpha;s(1)]);
[G,Z]=ode113('shoot',[a b],[alpha;s(2)])
hold
tol=1e-4
u=s(1);
v=s(2);
while abs(u-v)>tol;
s(3)=(u+v)/2;
[G,W]=ode113('shoot',[a b],[alpha;s(3)]);
if W(end,1)>0
u=s(3);
else
v=s(3);
end
end
[G,W]=ode113('shoot',[a b],[alpha;s(3)])
plot(G,Y(:,1),'-o', G,Z(:,1),'-o',G,W(:,1),'-o')
Then I run the program, MATLAB said I'm using the plot argument incorrectly, where plot vectors must be the same lengths. I have no idea how to fix this problem. Any help is appreciated.
Your Y, Z and W outputs are from different runs of ode113. The output independents variables, G from each run are different because ode113 is an adaptive solver. There are two ways you can fix this. You can save your G outputs as separate variables:
...
[Gy,Y]=ode113('shoot',[a b],[alpha;s(1)]);
[Gz,Z]=ode113('shoot',[a b],[alpha;s(2)]);
...
[Gw,W]=ode113('shoot',[a b],[alpha;s(3)]);
plot(Gy,Y(:,1),'-o', Gz,Z(:,1),'-o',Gw,W(:,1),'-o');
Or you could specify a fixed set of output points by specifying more than two points for tspan (second argument to ode113):
...
tspan = linspace(a,b,50);
[G,Y]=ode113('shoot',tspan,[alpha;s(1)]);
[G,Z]=ode113('shoot',tspan,[alpha;s(2)]);
...
[G,W]=ode113('shoot',tspan,[alpha;s(3)]);
plot(G,Y(:,1),'-o', G,Z(:,1),'-o',G,W(:,1),'-o');
Unless your version of Matlab is more than 10 years old, you should also specify your integration function, shoot, via a function handle, not a string, i.e.:
[Gw,W]=ode113(#shoot,[a b],[alpha;s(3)]);

Solving Bessel Function using Runge Kutta

I'm working on an assignment for a class of mine and I'm supposed to write a code using a program of my choice (I've chosen Matlab) to solve the Bessel function differential equation using the 4th order Runge-Kutta method. For reference the Bessel function DE is:
x^2*(J_n)''+x*(J_n)'+(x^2-n^2)*J_n=0.
I'm able to separate this into two coupled first order DEs by:
(J_n)'=Z_n and
(Z_n)'+(1/x)*Z_n+[(x^2-n^2)/x^2]*J_n=0.
I have no experience with Matlab nor any other programming language before this assignment. I know Matlab has the 'ode45' command but I'm supposed to write the code myself, not rely on Matlab's commands. So far I've been working on the n=0 case for the Bessel function but I keep getting an error when I try and plot the function. The current error I have says: "Undefined function or method 'J' for input arguments of type 'double'." But I don't know how to fix this error nor if my code is even correct. Could someone tell me where I've gone wrong or what is the correct way to write this code?
h=0.01; %step size
J_0(1)=1; %initial condition for J_0
Z_0(1)=1; %initial condition for Z_0-This value should be zero
%but Matlab gives me an error. To fix this, I input
%Z_0(1)-1 to use the correct value for Z_0(1).
x(1)=0.001; %first value of x
dZ(Z_0,J_0)=(-1/x)*(Z_0-1)-J_0;
for i=[1:1:10]
dZ1=(-1/x)*(Z_0-1)-J_0;
dJ1=(Z_0(1)-1)*h;
dZ2=(-1/x)*(Z_0-1+0.5*h)-(J_0+0.5*h*dJ1);
dJ2=((Z_0(1)-1)+dZ1)*h;
dZ3=(-1/x)*(Z_0-1+0.5*h)-(J_0+0.5*h*dJ2);
dJ3=((Z_0(1)-1)+dZ1+dZ2)*h;
dZ4=(-1/x)*(Z_0-1+h)-(J_0+h*dJ3);
dJ4=((Z_0(1)-1)+dZ1+dZ2+dZ3)*h;
J(i+1)=J(i)+(h/6)*(dJ1+2*dJ2+2*dJ3+dJ4);
end
plot(J_0);
Thanks in advance for any help
Your problem is on the line:
J(i+1)=J(i)+(h/6)*(dJ1+2*dJ2+2*dJ3+dJ4);
In the right-hand side of your assignment operator you use the variable J that is never set before i is taking the value 1. Looks like a typo to me (should it be J_0 instead?)
Also, don't forget your index i when computing your dJ and dZ stuff in the for loop.

Error in Ordinary Differential Equation representation

UPDATE
I am trying to find the Lyapunov Exponents given in link LE. I am trying to figure it out and understand it by taking the following eqs for my case. These are a set of ordinary differential equations (these are just for testing how to work with cos and sin as ODE)
f(1)=ALPHA*(y-x);
f(2)=x*(R-z)-y;
f(3) = 10*cos(x);
and x=X(1); y=X(2); cos(y)=X(3);
f1 means dx/dt;f2 dy/dt and f3 in this case would be -10sinx. However,when expressing as x=X(1);y=X(2);i am unsure how to express for cos.This is just a trial example i was doing so as to know how to work with equations where we have a cos,sin etc terms as a function of another variable.
When using ode45 to solve these Eqs
[T,Res]=sol(3,#test_eq,#ode45,0,0.01,20,[7 2 100 ],10);
it throws the following error
??? Attempted to access (2); index must be a positive integer or logical.
Error in ==> Eq at 19
x=X(1); y=X(2); cos(x)=X(3);
Is my representation x=X(1); y=X(2); cos(y)=X(3); alright?
How to resolve the error?
Thank you
No your representation is completely wrong.
You can't possibly set values in this way!
For a start, you are trying to assign a value X(3) to a function.
first I am not sure you understand the difference between
x=4
and
4=x
which are completely different meanings. If you understand this, you'll see that you can't possibly assign using cos(x)=X(3).
Second: what is the function sol() you are calling? have you defined it?
Third, to solve or evaluate ODEs you should be using deval or solve functions in matlab. Their help files should give you examples.