Finding sub-matrix with minimum elementwise sum - matlab

I have a symmetric m-by-m matrix A. Each element has a value between 0 and 1. I now want to choose n rows / columns of A which form an n-by-n sub-matrix B.
The criteria for choosing these elements, is that the sum of all elements of B must be the minimum out of all possible n-by-n sub-matrices of A.
For example, suppose that A is a 4-by-4 matrix:
A = [0 0.5 1 0; 0.5 0 0.5 0; 1 0.5 1 1; 0 0 1 0.5]
And n is set to 3. Then, the best B is the one taking the first, second and fourth rows / columns of A:
B = [0 0.5 0; 0.5 0 0; 0 0 0.5]
Where the sum of these elements is 0 + 0.5 + 0 + 0.5 + 0 + 0 + 0 + 0 + 0.5 = 1.5, which is smaller than another other possible 3-by-3 sub-matrices (e.g. using the first, third and fourth rows / columns).
How can I do this?
This is partly a mathematics question, and partly a Matlab one. Any help with either would be great!

Do the following:
m = size(A,1);
n=3;
sub = nchoosek(1:m,n); % (numCombinations x n)
subR = permute(sub,[2,3,1]); % (n x 1 x numCombinations), row indices
subC = permute(sub,[3,2,1]); % (1 x n x numCombinations), column indices
lin = bsxfun(#plus,subR,m*(subC-1)); % (n x n x numCombinations), linear indices
allB = A(lin); % (n x n x numCombinations), all possible Bs
sumB = sum(sum(allB,1),2); % (1 x 1 x numCombinations), sum of Bs
sumB = squeeze(sumB); % (numCombinations x 1), sum of Bs
[minB,minBInd] = min(sumB);
fprintf('Indices for minimum B: %s\n',mat2str(sub(minBInd,:)))
fprintf('Minimum B: %s (Sum: %g)\n',mat2str(allB(:,:,minBInd)),minB)
This looks only for submatrices where the row indices are the same as the column indices, and not necessarily consecutive. That is how I understood the question.

This is a bit brute force, but should work
A = [0 0.5 1 0; 0.5 0 0.5 0; 1 0.5 1 1; 0 0 1 0.5];
sizeA = size(A,1);
size_sub=3;
idx_combs = nchoosek(1:sizeA, size_sub);
for ii=1:size(idx_combs,1)
sub_temp = A(idx_combs(ii,:),:);
sub = sub_temp(:,idx_combs(ii,:));
sum_temp = sum(sub);
sums(ii) = sum(sum_temp);
end
[min_set, idx] = min(sums);
sub_temp = A(idx_combs(idx,:),:);
sub = sub_temp(:,idx_combs(idx,:))

Try to convolve the matrix A with a smaller matrix M. Eg if you is interested in finding the 3x3 submatrix then let M be ones(3). This code shows how it works.
A = toeplitz(10:-1:1) % Create a to eplitz matrix (example matrix)
m = 3; % Submatrix size
mC = ceil(m/2); % Distance to center of submatrix
M = ones(m);
Aconv = conv2(A,M); % Do the convolution.
[~,minColIdx] = min(min(Aconv(1+mC:end-mC,1+mC:end-mC))); % Find column center with smallest sum
[~,minRowIdx] = min(min(Aconv(1+mC:end-mC,minColIdx+mC),[],2)); % Find row center with smlest sum
minRowIdx = minRowIdx+mC-1 % Convoluted matrix is larger than A
minColIdx = minColIdx+mC-1 % Convoluted matrix is larger than A
range = -mC+1:mC-1
B = A(minRowIdx+range, minColIdx+range)
The idea is to imitate a fir filter y(n) = 1*x(n-1)+1*x(n)+1*x(n+1). For now it only finds the first smallest matrix though. Notice the +1 adjustment because first matrix element is 1. Then notice the the restoration right below.

Related

Find rotation matrix with two vectors

I want to find the rotation matrix between two vectors.
[0;0;1] = R * [0.0023;0.0019;0.9899]
How do I find the 3*3 rotation matrix?
This is a simple rearrangement
% [0;0;1] = R * [0.0023;0.0019;0.9899];
% So ...
% [0;0;1] / [0.0023;0.0019;0.9899] = R
% This is a valid MATLAB command
R = [0;0;1] / [0.0023;0.0019;0.9899];
>> R =
[ 0 0 0
0 0 0
0 0 1.0102 ]
We can validate this result
R * [0.0023;0.0019;0.9899]
>> ans =
[0; 0; 1]
Your problem can be defined as a linear equation, say,
y = mx
where, y and x are matrices. Find m.
Solution:
m = x\y or m = mldivide(x,y)
Notice the backslash. It is not a forward slash / as Wolfie mentioned in his answer. For details see https://www.mathworks.com/help/matlab/ref/mldivide.html
Additional Details:
If x is a singular matrix, use pinv. See https://www.mathworks.com/help/matlab/ref/pinv.html for reference.

vectorize lookup values in table of interval limits

Here is a question about whether we can use vectorization type of operation in matlab to avoid writing for loop.
I have a vector
Q = [0.1,0.3,0.6,1.0]
I generate a uniformly distributed random vector over [0,1)
X = [0.11,0.72,0.32,0.94]
I want to know whether each entry of X is between [0,0.1) or [0.1,0.3) or [0.3,0.6), or [0.6,1.0) and I want to return a vector which contains the index of the maximum element in Q that each entry of X is less than.
I could write a for loop
Y = zeros(length(X),1)
for i = 1:1:length(X)
Y(i) = find(X(i)<Q, 1);
end
Expected result for this example:
Y = [2,4,3,4]
But I wonder if there is a way to avoid writing for loop? (I see many very good answers to my question. Thank you so much! Now if we go one step further, what if my Q is a matrix, such that I want check whether )
Y = zeros(length(X),1)
for i = 1:1:length(X)
Y(i) = find(X(i)<Q(i), 1);
end
Use the second output of max, which acts as a sort of "vectorized find":
[~, Y] = max(bsxfun(#lt, X(:).', Q(:)), [], 1);
How this works:
For each element of X, test if it is less than each element of Q. This is done with bsxfun(#lt, X(:).', Q(:)). Note each column in the result corresponds to an element of X, and each row to an element of Q.
Then, for each element of X, get the index of the first element of Q for which that comparison is true. This is done with [~, Y] = max(..., [], 1). Note that the second output of max returns the index of the first maximizer (along the specified dimension), so in this case it gives the index of the first true in each column.
For your example values,
Q = [0.1, 0.3, 0.6, 1.0];
X = [0.11, 0.72, 0.32, 0.94];
[~, Y] = max(bsxfun(#lt, X(:).', Q(:)), [], 1);
gives
Y =
2 4 3 4
Using bsxfun will help accomplish this. You'll need to read about it. I also added a Q = 0 at the beginning to handle the small X case
X = [0.11,0.72,0.32,0.94 0.01];
Q = [0.1,0.3,0.6,1.0];
Q_extra = [0 Q];
Diff = bsxfun(#minus,X(:)',Q_extra (:)); %vectorized subtraction
logical_matrix = diff(Diff < 0); %find the transition from neg to positive
[X_categories,~] = find(logical_matrix == true); % get indices
% output is 2 4 3 4 1
EDIT: How long does each method take?
I got curious about the difference between each solution:
Test Code Below:
Q = [0,0.1,0.3,0.6,1.0];
X = rand(1,1e3);
tic
Y = zeros(length(X),1);
for i = 1:1:length(X)
Y(i) = find(X(i)<Q, 1);
end
toc
tic
result = arrayfun(#(x)find(x < Q, 1), X);
toc
tic
Q = [0 Q];
Diff = bsxfun(#minus,X(:)',Q(:)); %vectorized subtraction
logical_matrix = diff(Diff < 0); %find the transition from neg to positive
[X_categories,~] = find(logical_matrix == true); % get indices
toc
Run it for yourself, I found that when the size of X was 1e6, bsxfun was much faster, while for smaller arrays the differences were varying and negligible.
SAMPLE: when size X was 1e3
Elapsed time is 0.001582 seconds. % for loop
Elapsed time is 0.007324 seconds. % anonymous function
Elapsed time is 0.000785 seconds. % bsxfun
Octave has a function lookup to do exactly that. It takes a lookup table of sorted values and an array, and returns an array with indices for values in the lookup table.
octave> Q = [0.1 0.3 0.6 1.0];
octave> x = [0.11 0.72 0.32 0.94];
octave> lookup (Q, X)
ans =
1 3 2 3
The only issue is that your lookup table has an implicit zero which be fixed easily with:
octave> lookup ([0 Q], X) # alternatively, just add 1 at the results
ans =
2 4 3 4
You can create an anonymous function to perform the comparison, then apply it to each member of X using arrayfun:
compareFunc = #(x)find(x < Q, 1);
result = arrayfun(compareFunc, X, 'UniformOutput', 1);
The Q array will be stored in the anonymous function ( compareFunc ) when the anonymous function is created.
Or, as one line (Uniform Output is the default behavior of arrayfun):
result = arrayfun(#(x)find(x < Q, 1), X);
Octave does a neat auto-vectorization trick for you if the vectors you have are along different dimensions. If you make Q a column vector, you can do this:
X = [0.11, 0.72, 0.32, 0.94];
Q = [0.1; 0.3; 0.6; 1.0; 2.0; 3.0];
X <= Q
The result is a 6x4 matrix indicating which elements of Q each element of X is less than. I made Q a different length than X just to illustrate this:
0 0 0 0
1 0 0 0
1 0 1 0
1 1 1 1
1 1 1 1
1 1 1 1
Going back to the original example you have, you can do
length(Q) - sum(X <= Q) + 1
to get
2 4 3 4
Notice that I have semicolons instead of commas in the definition of Q. If you want to make it a column vector after defining it, do something like this instead:
length(Q) - sum(X <= Q') + 1
The reason that this works is that Octave implicitly applies bsxfun to an operation on a row and column vector. MATLAB will not do this until R2016b according to #excaza's comment, so in MATLAB you can do this:
length(Q) - sum(bsxfun(#le, X, Q)) + 1
You can play around with this example in IDEOne here.
Inspired by the solution posted by #Mad Physicist, here is my solution.
Q = [0.1,0.3,0.6,1.0]
X = [0.11,0.72,0.32,0.94]
Temp = repmat(X',1,4)<repmat(Q,4,1)
[~, ind]= max( Temp~=0, [], 2 );
The idea is that make the X and Q into the "same shape", then use element wise comparison, then we obtain a logical matrix whose row tells whether a given element in X is less than each of the element in Q, then return the first non-zero index of each row of this logical matrix. I haven't tested how fast this method is comparing to other methods

How to zero out the centre k by k matrix in an input matrix with odd number of columns and rows

I am trying to solve this problem:
Write a function called cancel_middle that takes A, an n-by-m
matrix, as an input where both n and m are odd numbers and k, a positive
odd integer that is smaller than both m and n (the function does not have to
check the input). The function returns the input matrix with its center k-by-k
matrix zeroed out.
Check out the following run:
>> cancel_middle(ones(5),3)
ans =
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1
My code works only when k=3. How can I generalize it for all odd values of k? Here's what I have so far:
function test(n,m,k)
A = ones(n,m);
B = zeros(k);
A((end+1)/2,(end+1)/2)=B((end+1)/2,(end+1)/2);
A(((end+1)/2)-1,((end+1)/2)-1)= B(1,1);
A(((end+1)/2)-1,((end+1)/2))= B(1,2);
A(((end+1)/2)-1,((end+1)/2)+1)= B(1,3);
A(((end+1)/2),((end+1)/2)-1)= B(2,1);
A(((end+1)/2),((end+1)/2)+1)= B(2,3);
A(((end+1)/2)+1,((end+1)/2)-1)= B(3,1);
A(((end+1)/2)+1,((end+1)/2))= B(3,2);
A((end+1)/2+1,(end+1)/2+1)=B(3,3)
end
You can simplify your code. Please have a look at
Matrix Indexing in MATLAB. "one or both of the row and column subscripts can be vectors", i.e. you can define a submatrix. Then you simply need to do the indexing correct: as you have odd numbers just subtract m-k and n-k and you have the number of elements left from your old matrix A. If you divide it by 2 you get the padding on the left/right, top/bottom. And another +1/-1 because of Matlab indexing.
% Generate test data
n = 13;
m = 11;
A = reshape( 1:m*n, n, m )
k = 3;
% Do the calculations
start_row = (n-k)/2 + 1
start_col = (m-k)/2 + 1
A( start_row:start_row+k-1, start_col:start_col+k-1 ) = zeros( k )
function b = cancel_middle(a,k)
[n,m] = size(a);
start_row = (n-k)/2 + 1;
start_column = (m-k)/2 + 1;
end_row = (n-k)/2 + k;
end_column = (m-k)/2 + k;
a(start_row:end_row,start_column:end_column) = 0;
b = a;
end
I have made a function in an m file called cancel_middle and it basically converts the central k by k matrix as a zero matrix with the same dimensions i.e. k by k.
the rest of the matrix remains the same. It is a general function and you'll need to give 2 inputs i.e the matrix you want to convert and the order of submatrix, which is k.

Replacing zeros (or NANs) in a matrix with the previous element row-wise or column-wise in a fully vectorized way

I need to replace the zeros (or NaNs) in a matrix with the previous element row-wise, so basically I need this Matrix X
[0,1,2,2,1,0;
5,6,3,0,0,2;
0,0,1,1,0,1]
To become like this:
[0,1,2,2,1,1;
5,6,3,3,3,2;
0,0,1,1,1,1],
please note that if the first row element is zero it will stay like that.
I know that this has been solved for a single row or column vector in a vectorized way and this is one of the nicest way of doing that:
id = find(X);
X(id(2:end)) = diff(X(id));
Y = cumsum(X)
The problem is that the indexing of a matrix in Matlab/Octave is consecutive and increments columnwise so it works for a single row or column but the same exact concept cannot be applied but needs to be modified with multiple rows 'cause each of raw/column starts fresh and must be regarded as independent. I've tried my best and googled the whole google but coukldn’t find a way out. If I apply that same very idea in a loop it gets too slow cause my matrices contain 3000 rows at least. Can anyone help me out of this please?
Special case when zeros are isolated in each row
You can do it using the two-output version of find to locate the zeros and NaN's in all columns except the first, and then using linear indexing to fill those entries with their row-wise preceding values:
[ii jj] = find( (X(:,2:end)==0) | isnan(X(:,2:end)) );
X(ii+jj*size(X,1)) = X(ii+(jj-1)*size(X,1));
General case (consecutive zeros are allowed on each row)
X(isnan(X)) = 0; %// handle NaN's and zeros in a unified way
aux = repmat(2.^(1:size(X,2)), size(X,1), 1) .* ...
[ones(size(X,1),1) logical(X(:,2:end))]; %// positive powers of 2 or 0
col = floor(log2(cumsum(aux,2))); %// col index
ind = bsxfun(#plus, (col-1)*size(X,1), (1:size(X,1)).'); %'// linear index
Y = X(ind);
The trick is to make use of the matrix aux, which contains 0 if the corresponding entry of X is 0 and its column number is greater than 1; or else contains 2 raised to the column number. Thus, applying cumsum row-wise to this matrix, taking log2 and rounding down (matrix col) gives the column index of the rightmost nonzero entry up to the current entry, for each row (so this is a kind of row-wise "cummulative max" function.) It only remains to convert from column number to linear index (with bsxfun; could also be done with sub2ind) and use that to index X.
This is valid for moderate sizes of X only. For large sizes, the powers of 2 used by the code quickly approach realmax and incorrect indices result.
Example:
X =
0 1 2 2 1 0 0
5 6 3 0 0 2 3
1 1 1 1 0 1 1
gives
>> Y
Y =
0 1 2 2 1 1 1
5 6 3 3 3 2 3
1 1 1 1 1 1 1
You can generalize your own solution as follows:
Y = X.'; %'// Make a transposed copy of X
Y(isnan(Y)) = 0;
idx = find([ones(1, size(X, 1)); Y(2:end, :)]);
Y(idx(2:end)) = diff(Y(idx));
Y = reshape(cumsum(Y(:)), [], size(X, 1)).'; %'// Reshape back into a matrix
This works by treating the input data as a long vector, applying the original solution and then reshaping the result back into a matrix. The first column is always treated as non-zero so that the values don't propagate throughout rows. Also note that the original matrix is transposed so that it is converted to a vector in row-major order.
Modified version of Eitan's answer to avoid propagating values across rows:
Y = X'; %'
tf = Y > 0;
tf(1,:) = true;
idx = find(tf);
Y(idx(2:end)) = diff(Y(idx));
Y = reshape(cumsum(Y(:)),fliplr(size(X)))';
x=[0,1,2,2,1,0;
5,6,3,0,1,2;
1,1,1,1,0,1];
%Do it column by column is easier
x=x';
rm=0;
while 1
%fields to replace
l=(x==0);
%do nothing for the first row/column
l(1,:)=0;
rm2=sum(sum(l));
if rm2==rm
%nothing to do
break;
else
rm=rm2;
end
%replace zeros
x(l) = x(find(l)-1);
end
x=x';
I have a function I use for a similar problem for filling NaNs. This can probably be cutdown or sped up further - it's extracted from pre-existing code that has a bunch more functionality (forward/backward filling, maximum distance etc).
X = [
0 1 2 2 1 0
5 6 3 0 0 2
1 1 1 1 0 1
0 0 4 5 3 9
];
X(X == 0) = NaN;
Y = nanfill(X,2);
Y(isnan(Y)) = 0
function y = nanfill(x,dim)
if nargin < 2, dim = 1; end
if dim == 2, y = nanfill(x',1)'; return; end
i = find(~isnan(x(:)));
j = 1:size(x,1):numel(x);
j = j(ones(size(x,1),1),:);
ix = max(rep([1; i],diff([1; i; numel(x) + 1])),j(:));
y = reshape(x(ix),size(x));
function y = rep(x,times)
i = find(times);
if length(i) < length(times), x = x(i); times = times(i); end
i = cumsum([1; times(:)]);
j = zeros(i(end)-1,1);
j(i(1:end-1)) = 1;
y = x(cumsum(j));

Matlab: Applying threshold to one dimension in a matrix

I have a matrix M(x,y). I want to apply a threshold in all values in x, such that if x
Example:
M = 1, 2;
3, 4;
5, 6;
If t = 5 is applied on the 1st dimension, the result will be
R = 0, 2;
0, 4;
5, 6;
One way (use M(:,1) to select the first column; M(:,1)<5 returns row indices for items in the first column that are lest than 5))-
> R = M;
> R(M(:,1)<5,1) = 0
R =
0 2
0 4
5 6
Another -
R = M;
[i,j]=find(M(:,1)<5); % locate rows (i) and cols (j) where M(:,1) < 5
% so j is just going to be all 1
% and i has corresponding rows
R(i,1)=0;
To do it in a matrix of arbitrary dimensions:
thresh_min = 5;
M(M < thresh_min) = 0;
The statement M < thresh_min returns indices of M that are less than thresh_min. Then, reindexing into M with these indices, you can set all of these valuse fitting your desired criterion to 0 (or whatever else).