Can I use claims to secure EF fields using PostSharp? - entity-framework

It it possible to use claims based permissions to secure EF fields using post sharp. We have a multi-tenanted app that we are moving to claims and also have issues of who can read/write to what fields. I saw this but it seems role based http://www.postsharp.net/aspects/examples/security.
As far as I can see it would just be a case of rewriting the ISecurable part.
We were hoping to be able to decorate a field with a permission and silently ignore any write to if if the user did not have permission. We were also hopping that if they read it we could swap in another value e.g. Read salary and get back 0 if you don't have a claim ReadSalary.
Are these standard sort of things to do I've never done any serious AOP. So just wanted a quick confirmation before I mention this as an option.

Yes, it is possible to use PostSharp in this case and it should be pretty easy to convert given example from RBAC to claims based.
One thing that has to be considered is performance. When decorated fields are accessed frequently during processing an use-case (e.g. are read inside a loop) then a lot of time is wasted in redundant security checks. Decorating a method that represent an end-user's use-case would be more appropriate.
I would be afraid to silently swapping values of fields when user has insufficient permission. It could lead to some very surprising results when an algorithm is fed by artificial not-expected data.

Related

Check for object ownership with Prisma

I'm new to working with Prisma. One aspect that is unclear to me is the right way to check if a user has permission on an object. Let's assume we have Book and Author models. Every book has an author (one-to-many). Only authors have permission to delete books.
An easy way to enforce this would be this:
prismaClient.book.deleteMany({
id: bookId, <-- id is known
author: {
id: userId <-- id is known
}
})
But this way it's very hard to show an UnauthorizedError to the user. Instead, the response will be a 500 status code since we can't know the exact reason why the query failed.
The other approach would be to query the book first and check the author of the book instance, which would result in one more query.
Is there a best practice for this in Prisma?
Assuming you are using PostgreSQL, the best approach would be to use row-level-security(RLS) - but unfortunately, it is not yet officially supported by Prisma.
There is a discussion about this subject here
https://github.com/prisma/prisma/issues/5128
As for the current situation, to my opinion, it is better to use an additional query and provide the users with informative feedback rather than using the other method you suggested without knowing why it was not deleted.
Eventually, it is up to you to decide based on your use case - whether or not it is important for you to know the reason for failure.
So this question is more generic than prisma - it is also true when running updates/deletes in raw SQL.
When you have extra where clauses to check for ownership, it's difficult to infer which of the clause(s) caused that if the update does not happen, without further queries.
You can achieve this with row level security in postgres, but even that does not come out the box and involves custom configuration to throw specific exceptions when rows are not found due to row level security rules. See this answer for more detail.
I tend to think that doing customised stuff like this is rarely worth the tradeoff, unless you need specialised UX for an uncommon circumstance.
What I would suggest instead in this case is to keep it simple and just use extra queries to check for ownership, but optimise the UX optimistically for the case where the user does own the entity and keep that common and legitimate usecase to a single query.
That is, catch the exception from primsa (or the fact that the update returns 0 rows, or whatever it is in different cases), and only then run a specific select for ownership, to check if that was the reason the update failed.
This is a nice tradeoff because it keeps things simple, and only runs extra queries in the (usually) far less common failure case.
Even having said all that, the broader caveat as always is that probably the extra queries simply won't matter regardless! It's, in 99% of cases, probably best to just always run the extra ownership query upfront as a pattern to keep things as simple as possible, which is what you really want to optimise for over performance until you're running at significant scale.

Meteor method vs. deny/allow rules

In Meteor, when should I prefer a method over a deny rule?
It seems to me that allow/deny rules should be favoured, as their goal is more explicit, and one knows where to look for them.
However, in the Discover Meteor book, preventing duplicate insertions (“duplicate” being defined as adding a document whose url property is already defined in some other document of the same collection) is said to have to be defined through a method (and left as an exercise to the reader, chapter 8.3).
I think I am able to implement this check in a way that I find much clearer:
Posts.deny({
update: function(userId, post, fieldNames, modifier) {
return Posts.findOne({ url: modifier.$set.url, _id: { $ne: post._id } });
}
});
(N.B. if you know the example, yes, I voluntarily left out the “only a subset of the attributes is modified” check from the question to be more specific.)
I understand that there are other update operators than $set in Mongo, but they look typed and I don't feel like leaving a security hole open.
So: are there any flaws in my deny rule? Independently, should I favour a method? What would I gain from it? What would I lose?
Normally I try to avoid subjective answers, but this is a really important debate. First I'd recommend reading Meteor Methods vs Client-Side Operations from the Discover Meteor blog. Note that at Edthena we exclusively use methods for reasons which should become evident.
Methods
pro
Methods can correctly enforce schema and validation rules of arbitrary complexity without the need of an outside library. Side note - check is an excellent tool for validating the structure of your inputs.
Each method is a single source of truth in your application. If you create a 'posts.insert' method, you can easily ensure it is the only way in your app to insert posts.
con
Methods require an imperative style, and they tend to be verbose in relation to the number of validations required for an operation.
Client-side Operations
pro
allow/deny has a simple declarative style.
con
Validating schema and permissions on an update operation is infinitely hard. If you need to enforce a schema you'll need to use an outside library like collection2. This reason alone should give you pause.
Modifications can be spread all over your application. Therefore, it may be tricky to identify why a particular database operation happened.
Summary
In my opinion, allow/deny is more aesthetically pleasing, however it's fundamental weakness is in enforcing permissions (particularly on updates). I would recommend client-side operations in cases where:
Your codebase is relatively small - so it's easy to grep for all instances where a particular modifier occurs.
You don't have many developers - so you don't need to all agree that there is one and only one way to insert into X collection.
You have simple permission rules - e.g. only the owner of a document can modify any aspect of it.
In my opinion, using client-side operations is a reasonable choice when building an MVP, but I'd switch to methods for all other situations.
update 2/22/15
Sashko Stubailo created a proposal to replace allow/deny with insert/update/remove methods.
update 6/1/16
The meteor guide takes the position that allow/deny should always be avoided.

Forcing web api consumers to accept new fields in responses

I'm creating v2 of an existing RESTful web api.
The responses are JSON lists of objects, roughly in the form:
[
{
name1=value1,
name2=value2,
},
{
name1=value3,
name2=value4,
}
]
One problem we've observed with v1 is that some clients will access fields by integer position, instead of by name. This means that if we decide to add fields to the response (which we had originally considered a compatibility-preserving change), then some of our client's code breaks, unless we add the fields at the end. Even then, other clients code breaks anyway, because they will fail in some way when they encounter an unexpected attribute name.
To counter this in v2, we are considering randomly reordering the fields in every response. This will force clients to index fields by name instead of by position.
Additionally, we are considering adding a randomly-named field to every response. This will force clients to ignore fields they don't recognize.
While this sounds somewhat barmy, it does have the advantage that we will be able to add new fields, safe in the knowledge that this isn't breaking any clients. This means we can issue compatible updates to v2.1, v2.3, etc at the same URL, and that means we will only have to maintain & support a smaller number of API versions.
The alternative is to issue compatibility-breaking v3, v4, at new URLs, which means that we will have to maintain & support many incompatible API versions, which will stretch us that little bit thinner.
Is this a bad idea, and if so, why? Are there any other similar ideas I should think about?
Update: The first couple of responses are pointing out that if I document the issue (i.e. indicate in the docs that fields may be added or reordered) then I am no longer to blame if client code breaks when I subsequently add or reorder fields. Sadly I don't think this is an appropriate option for us: Many dozens of organisations rely on the functionality of our APIs for real-world transactions with substantial financial impact. These organisations are not technically oriented - and the resulting implementations at the client end cover the whole spectrum of technical proficiency. We already did document that fields may get added or reordered in the docs for v1, and that clearly didn't work, because now we're having to issue v2 because many clients, due to lack of time or experience or ability, still wrote code that breaks when we add new fields. If I were now to add fields to the interface, it breaks a dozen different company's interfaces to us, which means they (and us) are bleeding money every minute. If I were to refuse to revert the change or fix it, saying "They should have read the docs!", then I will soon be out of the job, and rightly so. We may attempt to educate the 'failing' partners, but this is doomed to fail as the problem gets larger every month as we continue to grow. My question is, can I systemically head the whole issue off at the pass, preventing this situation from ever arising, no matter what clients try to do? If the techniques I suggest would work, why shouldn't I use them? Why isn't everyone else using them?
If you want your media types to be "evolvable", make that point very clear in the documentation. Similarly, if the placement order of fields is not guaranteed, make that explicitly clear too. If you supply sample code for your API, make sure it does not rely on field ordering.
However, even assuming that you have to maintain different versions of your media types, you don't have to version the URI. REST gives you the ability to maintain the same version-agnostic URI but use HTTP content negotiation (via the Accept and Content-Type headers) to offer different payloads at the same URI.
Therefore any client that doesn't explicitly wish to accept your new v2/v3/etc encoding won't get it. By default, you can return the old v1 encoding with the original field ordering and all of those brittle client apps will work fine. However, new client developers will know (thanks to your documentation) to indicate via Accept that they are willing and able to see the new fields and they don't care about their order. Best of all, you can (and should) use the same URI throughout. Remember - different payloads like this are just different representations of the same underlying resource, so the URI should be the same.
I've decided to run with the described techniques, to the max. I haven't heard any objections to them that hold any water for me. Brian's answer, about re-using the same URI for different API versions, is a solid and much-appreciated complementary idea (with upvote), but I can't award it 'best answer' because it doesn't get to the core of my original question.

SimpleDB: Guaranteed to see all item attributes if we see the item? (non-consistent read)

I've just discovered an assumption in my use of SimpleDB. I suspect it's safe but would like other opinions since the docs don't seem to cover it.
So say Process 1 stores an item with x attributes. When Process 2 tries to access said item (without consistent read) & finds it, is it guaranteed to have all the attributes stored by Process 1?
I'm excluding the possibility that another process could have changed the data.
I also know that Process 2 has no guarantee of seeing the item unless consistent read is used, I'm just talking about the point when it does eventually see it.
I guess the question is, once I can get an item & am not changing it anywhere else can I assume it has an ad-hoc fixed schema and access all my expected attributes without checking they actually exist?
I don't want to be in a situation where I need to keep requesting items until they have all the attributes I need to use them.
Thanks.
Although Amazon makes no such guarantees in the documentation the current implementation of their eventual consistency guarantees that you'll see all the properties stored by Process 1 or none of them.
See this thread over at the AWS forums and more specifically this answer by an Amazon employee confirming the behavior (emphasis mine).
I don't think we make that guarantee in the documentation, but the
current implementation treats each Put request as a bundle. It won't
split the request up and apply the operations piecemeal. You'll get
either step-1 responses or step-2 responses until eventual consistency
shakes out and leaves you with step-2 responses.
While this is undocumented behavior I suspect quite a few SimpleDB users are relying on it now and as such Amazon won't be likely to change it anytime soon, but that's ju my guess.

In salesforce.com can you have multivalued attributes?

I am developing a Novell Identity Manager driver for Salesforce.com, and am trying to understand the Salesforce.com platform better.
I have had really good success to date. I can read pretty much arbitrary object classes out of SFDC, and create eDirectory objects for them, and what not. This is all done and working nicely. (Publisher Channel). Once I got Query events mapped out, most everything started working in the Publisher Channel.
I am now working on sending events back to SFDC (Subscriber channel) when changes occur in eDirectory.
I am using the upsert() function in the SOAP API, and with Novell Identity Manager, you basically build the SOAP doc, and can see the results as you build it. (You can do it in XSLT or you can use the various allowed tokens to build the document in DirXML Script. I am using DirXML Script which has been working well so far.).
The upshot of that comment is that I can build the SOAP document, see it, to be sure I get it right. Which is usually different than the Java/C++ approach that the sample code usually provides. Much more visual this way.
There are several things about upsert() that I do not entirely understand. I know how to blank a value, should I get that sort of event. Inside the <urn:sObjects> node, add a node like (assuming you get your namespaces declared already):
<urn1:fieldsToNull>FieldName</urn1:fieldsToNull>
I know how to add a value (AttrValue) to the attribute (FieldName), add a node like:
<FieldName>AttrValue</FieldName>
All this works and is pretty straight forward.
The question I have is, can a value in SFDC be multi-valued? In eDirectory, a multi valued attribute being changed, can happen two ways:
All values can be removed, and the new set re-added.
The single value removed can be sent as that sort of event (remove-value) or many values can be removed in one operation.
Looking at SFDC, I only ever see Multi-picklist attributes that seem to be stored in a single entry : or ; delimited. Is there another kind of multi valued attribute managed differently in SFDC? And if so, how would one manipulate it via the SOAP API?
I still have to decide if I want to map those multi-picklists to a single string, or a multi valued attribute of strings. First way is easier, second way is more useful... Hmmm... Choices...
Some references:
I have been using the page Sample SOAP messages to understand what the docs should look like.
Apex Explorer is a kicking tool for browsing the database and testing queries. Much like DBVisualizer does for JDBC connected databases. This would have been so much harder without it!
SoapUi is also required, and a lovely tool!
As far as I know there's no multi-value field other than multi-select picklists (and they map to semicolon-separated string). Generally platform encourages you to create a proper relationship with another (possibly new, custom) table if you're in need of having multiple values associated to your data.
Only other "unusual" thing I can think of is how the OwnerId field on certain objects (Case, Lead, maybe something else) can be used to point to User or Queue record. Looks weird when you are used to foreign key relationships from traditional databases. But this is not identical with what you're asking as there will be only one value at a time.
Of course you might be surpised sometimes with values you'll see in the database depending on the viewing user's locale (stuff like System Administrator profile becoming Systeembeheerder in Dutch). But this will be still a single value, translated on the fly just before the query results are sent back to you.
When I had to perform SOAP integration with SFDC, I've always used WSDL files and most of the time was fine with Java code generated out of them with Apache Axis. Hand-crafting the SOAP message yourself seems... wow, hardcore a bit. Are you sure you prefer visualisation of XML over the creation of classes, exceptions and all this stuff ready for use with one of several out-of-the-box integration methods? If they'll ever change the WSDL I need just to regenerate the classes from it; whereas changes to your SOAP message creation library might be painful...