Type dependent implicits - scala

Two implicits are needed in the function, but I can't have them in the
same parameter list, because I get dependent method type. So I
considered currying once more, but that gives me a syntax error.
What's the correct way to do this?
def add[A](newAnnotations: Seq[A])
(implicit maybeAdd: MaybeAdd[L, Seq[A]])
(implicit mod: Modifier[maybeAdd.Out, Seq[A], Seq[A]]):
Slab[Content, maybeAdd.Out] = {
val l = maybeAdd(annotations, Seq[A]())
l.updateWith(_ ++ newAnnotations)
}

I edited MaybeAdd to have an Aux type, as suggested by #milessabin.
def add[A, Out0](newAnnotations: Seq[A])(implicit maybeAdd: MaybeAdd.Aux[L, Seq[A], Out0], mod: Modifier[Out0, Seq[A], Seq[A]]): Slab[Content, mod.Out] = {
val l = maybeAdd(annotations, Seq[A]())
new Slab(content, mod(l, _ ++ newAnnotations))
}

Note: the syntax error is likely to be:
illegal dependent method type:
parameter appears in the type of another parameter in the same section or an earlier one
Meaning one cannot use the dependent type in the same section, only in the next parameters block or as a return type only.
See "A short introduction to the Aux pattern" byLuigi.
type Aux[A0, B0] = Foo[A0] { type B = B0 }
basically Aux is just a way to extract the result of a type level computation
As noted in "Why is the Aux technique required for type-level computations?"
the Aux type aliases are entirely a syntactic convenience.
The Aux version has a couple of advantages over writing out the type refinements in this way: it's less noisy, and it doesn't require us to remember the name of the type member.
These are purely ergonomic issues, though—the Aux aliases make our code a little easier to read and write, but they don't change what we can or can't do with the code in any meaningful way.

Related

Get information of type in Scala3 macro

I'm struggling to get information of type in Scala3 macro implementation. I'll explain problem through code.
Here is application logic:
object BlockServiceImpl extends BlockService:
def authenticateUser0() = new ServiceCall[AuthUser,AuthUserResponse]:
def invoke(request: AuthUser): Future[AuthUserResponse] =
println("BlockServiceImpl authenticateUser0 called")
Future.successful(AuthUserResponse("test"))
Now, for the logic I want to make endpoints with help of macro.
defineRoute("POST","/v1/block",BlockServiceImpl.authenticateUser0)
This is inline method:
inline def defineRoute[Q: RootJsonFormat ,R: RootJsonFormat](method: String, uri: String,inline call: () => ServiceCall[Q,R]): AkkaHttpCall = ${ methodImpl[Q,R]('uri, 'call)}
And this is implementation of macro:
def methodImpl[Q: Type,R: Type](uri: Expr[String],expr: Expr[Function0[ServiceCall[Q,R]]])(using ctx: Quotes): Expr[AkkaHttpCall] = ...
How can I get information that Q is AuthUser type during macro expansion in a compile time?
A possible solution could be to use pattern matching on quoted expressions.
So for example, you can define a method that is used to retrieve the compile-time type:
def tag[A <: AnyKind] = throw new IllegalStateException("use it only to pattern match types")
And then, in the macro expansion, you can perform pattern match as:
'{ tag[Q] } match {
case '{ tag[AuthUser] } => // here I am sure that Q is AuthUser, since Q is matched with AuthUser
}
It is quite a trick (and is not very extensible as you have to add each type) so take everything I say with a grain of salt... I think that exists a clearer solution depends on your particular application logic :)
Bounding (See: Scala 3 Book: Context Bounds) the type of a parameter in a function can be achieved in several ways.
THIS IS WRONG (TY Dmytro!): When using generic parameters like so: [T : Type] we are aliasing a type
CORRECTION: When using generic parameters like so: [T : R] we are using syntactic sugar which represents an implicit parameter of type R[T]
For many applications, including yours, it can be beneficial to restrict the type of our generic parameter.
There are two main bounds, an "upper" and a "lower" bound.
The "upper" bound e.g. [T <: U] specifies that T must be of type U, or a subclass of U
The "lower" bound e.g. [T >: U] specifies that T must be of type U, or a super-class of U
It is possible to restrict both bounds, by first specifying the lower bound then the upper bound, e.g. [T >: Cat <: Animal]
I've solved it by putting information if Q and R were special cases (NotUsed, Done,..) in serializers for Q and R. The idea is took from the Lagom framework.

Scala: Casting results of groupBy(_.getClass)

In this hypothetical, I have a list of operations to be executed. Some of the operations in that list will be more efficient if they can be batched together (eg, lookup up different rows from the same table in a database).
trait Result
trait BatchableOp[T <: BatchableOp[T]] {
def resolve(batch: Vector[T]): Vector[Result]
}
Here we use F-bounded Polymorphism to allow the implementation of the operation to refer to its own type, which is highly convenient.
However, this poses a problem when it comes time to execute:
def execute(operations: Vector[BatchableOp[_]]): Vector[Result] = {
def helper[T <: BatchableOp[T]](clazz: Class[T], batch: Vector[T]): Vector[Result] =
batch.head.resolve(batch)
operations
.groupBy(_.getClass)
.toVector
.flatMap { case (clazz, batch) => helper(clazz, batch)}
}
This results in a compiler error stating inferred type arguments [BatchableOp[_]] do not conform to method helper's type parameter bounds [T <: BatchableOp[T]].
How can the Scala compiler be convinced that the group is all of the same type (which is a subclass of BatchableOp)?
One workaround is to specify the type explicitly, but in this case the type is unknown.
Another workaround relies on enumerating the child types, but I'd like to not have to update the execute method after implementing a new BatchableOp type.
I would like to approach the question systematically, so that the same solution strategy can be applied in similar cases.
First, an obvious remark: you want to work with a vector. The content of the vector can be of different types. The length of the vector is not limited. The number of types of entries of the vector is not limited. Therefore, the compiler cannot prove everything at compile time: you will have to use something like asInstanceOf at some point.
Now to the solution of the actual question:
This here compiles under 2.12.4:
import scala.language.existentials
trait Result
type BOX = BatchableOp[X] forSome { type X <: BatchableOp[X] }
trait BatchableOp[C <: BatchableOp[C]] {
def resolve(batch: Vector[C]): Vector[Result]
// not abstract, needed only once!
def collectSameClassInstances(batch: Vector[BOX]): Vector[C] = {
for (b <- batch if this.getClass.isAssignableFrom(b.getClass))
yield b.asInstanceOf[C]
}
// not abstract either, no additional hassle for subclasses!
def collectAndResolve(batch: Vector[BOX]): Vector[Result] =
resolve(collectSameClassInstances(batch))
}
def execute(operations: Vector[BOX]): Vector[Result] = {
operations
.groupBy(_.getClass)
.toVector
.flatMap{ case (_, batch) =>
batch.head.collectAndResolve(batch)
}
}
The main problem that I see here is that in Scala (unlike in some experimental dependently typed languages) there is no simple way to write down complex computations "under the assumption of existence of a type".
Therefore, it seems difficult / impossible to transform
Vector[BatchOp[T] forSome T]
into a
Vector[BatchOp[T]] forSome T
Here, the first type says: "it's a vector of batchOps, their types are unknown, and can be all different", whereas the second type says: "it's a vector of batchOps of unknown type T, but at least we know that they are all the same".
What you want is something like the following hypothetical language construct:
val vec1: Vector[BatchOp[T] forSome T] = ???
val vec2: Vector[BatchOp[T]] forSome T =
assumingExistsSomeType[C <: BatchOp[C]] yield {
/* `C` now available inside this scope `S` */
vec1.map(_.asInstanceOf[C])
}
Unfortunately, we don't have anything like it for existential types, we can't introduce a helper type C in some scope S such that when C is eliminated, we are left with an existential (at least I don't see a general way to do it).
Therefore, the only interesting question that is to be answered here is:
Given a Vector[BatchOp[X] forSome X] for which I know that there is one common type C such that they all are actually Vector[C], where is the scope in which this C is present as a usable type variable?
It turns out that BatchableOp[C] itself has a type variable C in scope. Therefore, I can add a method collectSameClassInstances to BachableOp[C], and this method will actually have some type C available that it can use in the return type. Then I can immediately pass the result of collectSameClassInstances to the resolve method, and then I get a completely benign Vector[Result] type as output.
Final remark: If you decide to write any code with F-bounded polymorphisms and existentials, at least make sure that you have documented very clearly what exactly you are doing there, and how you will ensure that this combination does not escape in any other parts of the codebase. It doesn't feel like a good idea to expose such interfaces to the users. Keep it localized, make sure these abstractions do not leak anywhere.
Andrey's answer has a key insight that the only scope with the appropriate type variable is on the BatchableOp itself. Here's a reduced version that doesn't rely on importing existentials:
trait Result
trait BatchableOp[T <: BatchableOp[T]] {
def resolve(batch: Vector[T]): Vector[Result]
def unsafeResolve(batch: Vector[BatchableOp[_]]): Vector[Result] = {
resolve(batch.asInstanceOf[Vector[T]])
}
}
def execute(operations: Vector[BatchableOp[_]]): Vector[Result] = {
operations
.groupBy(_.getClass)
.toVector
.flatMap{ case (_, batch) =>
batch.head.unsafeResolve(batch)
}
}

Scala: Cats, OptionT[Future, T] and ApplicativeError

Some time ago I've started using Cats and found OptionT very useful to work with Future[Option[T]] in most cases. But I faced with one drawback, to use AplicativeError I need to define type alias type FutureOption[T] = OptionT[Future, X] to matching F[_] required by AplicativeError and explicitly specify the type of my expression as FutureOption[T].
type FutureOption[T] = OptionT[Future, T] // definition to match F[_] kind
val x = OptionT.liftF(Future.failed(new Exception("error"))) : FutureOption[String] // need to specify type explicitly
x.recover {
case NonFatal(e) => "fixed"
}
If I remove type definition and explicit type specification of my expression the recover will not be available because OptionT[Future, T] don't match F[_], so it can't be converted implicitly to AplicativeErrorOps.
Unfortunately, the example below won't work because there is no recover method.
val x = OptionT.liftF(Future.failed(new Exception("error")))
x.recover {
case NonFatal(e) => "fixed"
}
Is there any way to avoid such kind of boilerplate code? At least I want to avoid specifying expression types as FutureOption[T] explicitly.
In addition to the other answer, I would like to suggest that you make sure you have -Ypartial-unification enabled for your build.
This is a fix for partial unification of type constructors. You can find a more detailed explanation about the fix here.
With partial unification enabled the code you provided in your question compiles fine. Please note that if you're using an IDE (e.g. Intellij) you might get "false negatives" (the code is underlined as incorrect and code completion doesn't work), but the scalac/sbt/gradle will compile it just fine.
Yes, there are at least two ways to cope with the type ascription.
using type lambdas (this can be intimidating):
val a: { type λ[A] = OptionT[Future, A] }#λ
using a compiler plugin like kind-projector, example usage:
val a: Lambda[A => OptionT[Future, A]]
But if you wanted to call Future's recover, you can always do:
val x = OptionT.liftF(Future.failed(new Exception("error")))
x.value.recover ...

Scala: Typecast without explicitly known type parameter

Consider the following example:
case class C[T](x:T) {
def f(t:T) = println(t)
type ValueType = T
}
val list = List(1 -> C(2), "hello" -> C("goodbye"))
for ((a,b) <- list) {
b.f(a)
}
In this example, I know (runtime guarantee) that the type of a will be some T, and b will have type C[T] with the same T. Of course, the compiler cannot know that, hence we get a typing error in b.f(a).
To tell the compiler that this invocation is OK, we need to do a typecast à la b.f(a.asInstanceOf[T]). Unfortunately, T is not known here. So my question is: How do I rewrite b.f(a) in order to make this code compile?
I am looking for a solution that does not involve complex constructions (to keep the code readable), and that is "clean" in the sense that we should not rely on code erasure to make it work (see the first approach below).
I have some working approaches, but I find them unsatisfactory for various reasons.
Approaches I tried:
b.asInstanceOf[C[Any]].f(a)
This works, and is reasonably readable, but it is based on a "lie". b is not of type C[Any], and the only reason we do not get a runtime error is because we rely on the limitations of the JVM (type erasure). I think it is good style only to use x.asInstanceOf[X] when we know that x is really of type X.
b.f(a.asInstanceOf[b.ValueType])
This should work according to my understanding of the type system. I have added the member ValueType to the class C in order to be able to explicitly refer to the type parameter T. However, in this approach we get a mysterious error message:
Error:(9, 22) type mismatch;
found : b.ValueType
(which expands to) _1
required: _1
b.f(a.asInstanceOf[b.ValueType])
^
Why? It seems to complain that we expect type _1 but got type _1! (But even if this approach works, it is limited to the cases where we have the possibility to add a member ValueType to C. If C is some existing library class, we cannot do that either.)
for ((a,b) <- list.asInstanceOf[List[(T,C[T]) forSome {type T}]]) {
b.f(a)
}
This one works, and is semantically correct (i.e., we do not "lie" when invoking asInstanceOf). The limitation is that this is somewhat unreadable. Also, it is somewhat specific to the present situation: if a,b do not come from the same iterator, then where can we apply this type cast? (This code also has the side effect of being too complex for Intelli/J IDEA 2016.2 which highlights it as an error in the editor.)
val (a2,b2) = (a,b).asInstanceOf[(T,C[T]) forSome {type T}]
b2.f(a2)
I would have expected this one to work since a2,b2 now should have types T and C[T] for the same existential T. But we get a compile error:
Error:(10, 9) type mismatch;
found : a2.type (with underlying type Any)
required: T
b2.f(a2)
^
Why? (Besides that, the approach has the disadvantage of incurring runtime costs (I think) because of the creation and destruction of a pair.)
b match {
case b : C[t] => b.f(a.asInstanceOf[t])
}
This works. But enclosing the code with a match makes the code much less readable. (And it also is too complicated for Intelli/J.)
The cleanest solution is, IMO, the one you found with the type-capture pattern match. You can make it concise, and hopefully readable, by integrating the pattern directly inside your for comprehension, as follows:
for ((a, b: C[t]) <- list) {
b.f(a.asInstanceOf[t])
}
Fiddle: http://www.scala-js-fiddle.com/gist/b9030033133ee94e8c18ad772f3461a0
If you are not in a for comprehension already, unfortunately the corresponding pattern assignment does not work:
val (c, d: C[t]) = (a, b)
d.f(c.asInstanceOf[t])
That's because t is not in scope anymore on the second line. In that case, you would have to use the full pattern matching.
Maybe I'm confused about what you are trying to achieve, but this compiles:
case class C[T](x:T) {
def f(t:T) = println(t)
type ValueType = T
}
type CP[T] = (T, C[T])
val list = List[CP[T forSome {type T}]](1 -> C(2), "hello" -> C("goodbye"))
for ((a,b) <- list) {
b.f(a)
}
Edit
If the type of the list itself is out of your control, you can still cast it to this "correct" type.
case class C[T](x:T) {
def f(t:T) = println(t)
type ValueType = T
}
val list = List(1 -> C(2), "hello" -> C("goodbye"))
type CP[T] = (T, C[T])
for ((a,b) <- list.asInstanceOf[List[CP[T forSome { type T }]]]) {
b.f(a)
}
Great question! Lots to learn here about Scala.
Other answers and comments have already addressed most of the issues here, but I'd like to address a few additional points.
You asked why this variant doesn't work:
val (a2,b2) = (a,b).asInstanceOf[(T,C[T]) forSome {type T}]
b2.f(a2)
You aren't the only person who's been surprised by this; see e.g. this recent very similar issue report: SI-9899.
As I wrote there:
I think this is working as designed as per SLS 6.1: "The following skolemization rule is applied universally for every expression: If the type of an expression would be an existential type T, then the type of the expression is assumed instead to be a skolemization of T."
Basically, every time you write a value-level expression that the compiler determines to have an existential type, the existential type is instantiated. b2.f(a2) has two subexpressions with existential type, namely b2 and a2, so the existential gets two different instantiations.
As for why the pattern-matching variant works, there isn't explicit language in SLS 8 (Pattern Matching) covering the behavior of existential types, but 6.1 doesn't apply because a pattern isn't technically an expression, it's a pattern. The pattern is analyzed as a whole and any existential types inside only get instantiated (skolemized) once.
As a postscript, note that yes, when you play in this area, the error messages you get are often confusing or misleading and ought to be improved. See for example https://github.com/scala/scala-dev/issues/205
A wild guess, but is it possible that you need something like this:
case class C[+T](x:T) {
def f[A >: T](t: A) = println(t)
}
val list = List(1 -> C(2), "hello" -> C("goodbye"))
for ((a,b) <- list) {
b.f(a)
}
?
It will type check.
I'm not quite sure what "runtime guarantee" means here, usually it means that you are trying to fool type system (e.g. with asInstanceOf), but then all bets are off and you shouldn't expect type system to be of any help.
UPDATE
Just for the illustration why type casting is an evil:
case class C[T <: Int](x:T) {
def f(t: T) = println(t + 1)
}
val list = List("hello" -> C(2), 2 -> C(3))
for ((a, b: C[t]) <- list) {
b.f(a.asInstanceOf[t])
}
It compiles and fails at runtime (not surprisingly).
UPDATE2
Here's what generated code looks like for the last snippet (with C[t]):
...
val a: Object = x1._1();
val b: Test$C = x1._2().$asInstanceOf[Test$C]();
if (b.ne(null))
{
<synthetic> val x2: Test$C = b;
matchEnd4({
x2.f(scala.Int.unbox(a));
scala.runtime.BoxedUnit.UNIT
})
}
...
Type t simply vanished (as it should have been) and Scala is trying to convert a to an upper bound of T in C, i.e. Int. If there is no upper bound it's going to be Any (but then method f is nearly useless unless you cast again or use something like println which takes Any).

Type parameters versus member types in Scala

I'd like to know how do the member types work in Scala, and how should I associate types.
One approach is to make the associated type a type parameter. The advantages of this approach is that I can prescribe the variance of the type, and I can be sure that a subtype doesn't change the type. The disadvantages are, that I cannot infer the type parameter from the type in a function.
The second approach is to make the associated type a member of the second type, which has the problem that I can't prescribe bounds on the subtypes' associated types and therefore, I can't use the type in function parameters (when x : X, X#T might not be in any relation with x.T)
A concrete example would be:
I have a trait for DFAs (could be without the type parameter)
trait DFA[S] { /* S is the type of the symbols in the alphabet */
trait State { def next(x : S); }
/* final type Sigma = S */
}
and I want to create a function for running this DFA over an input sequence, and I want
the function must take anything <% Seq[alphabet-type-of-the-dfa] as input sequence type
the function caller needn't specify the type parameters, all must be inferred
I'd like the function to be called with the concrete DFA type (but if there is a solution where the function would not have a type parameter for the DFA, it's OK)
the alphabet types must be unconstrained (ie. there must be a DFA for Char as well as for a yet unknown user-defined class)
the DFAs with different alphabet types are not subtypes
I tried this:
def runDFA[S, D <: DFA[S], SQ <% Seq[S]](d : D)(seq : SQ) = ....
this works, except the type S is not inferred here, so I have to write the whole type parameter list on each call site.
def runDFA[D <: DFA[S] forSome { type S }, SQ <% Seq[D#Sigma]]( ... same as above
this didn't work (invalid circular reference to type D??? (what is it?))
I also deleted the type parameter, created an abstract type Sigma and tried binding that type in the concrete classes. runDFA would look like
def runDFA[D <: DFA, SQ <% Seq[D#Sigma]]( ... same as above
but this inevitably runs into problems like "type mismatch: expected dfa.Sigma, got D#Sigma"
Any ideas? Pointers?
Edit:
As the answers indicate there is no simple way of doing this, could somebody elaborate more on why is it impossible and what would have to be changed so it worked?
The reasons I want runDFA ro be a free function (not a method) is that I want other similar functions, like automaton minimization, regular language operations, NFA-to-DFA conversions, language factorization etc. and having all of this inside one class is just against almost any principle of OO design.
First off, you don't need the parameterisation SQ <% Seq[S]. Write the method parameter as Seq[S]. If SQ <% Seq[S] then any instance of it is implicitly convertable to Seq[S] (that's what <% means), so when passed as Seq[S] the compiler will automatically insert the conversion.
Additionally, what Jorge said about type parameters on D and making it a method on DFA hold. Because of the way inner classes work in Scala I would strongly advise putting runDFA on DFA. Until the path dependent typing stuff works, dealing with inner classes of some external class can be a bit of a pain.
So now you have
trait DFA[S]{
...
def runDFA(seq : Seq[S]) = ...
}
And runDFA is all of a sudden rather easy to infer type parameters for: It doesn't have any.
Scala's type inference sometimes leaves much to be desired.
Is there any reason why you can't have the method inside your DFA trait?
def run[SQ <% Seq[S]](seq: SQ)
If you don't need the D param later, you can also try defining your method without it:
def runDFA[S, SQ <% Seq[S]](d: DFA[S])(seq: SQ) = ...
Some useful info on how the two differs :
From the the shapeless guide:
Without type parameters you cannot make dependent types , for example
trait Generic[A] {
type Repr
def to(value: A): Repr
def from(value: Repr): A
}
import shapeless.Generic
def getRepr[A](value: A)(implicit gen: Generic[A]) =
gen.to(value)
Here the type returned by to depends on the input type A (because the supplied implicit depends on A):
case class Vec(x: Int, y: Int)
case class Rect(origin: Vec, size: Vec)
getRepr(Vec(1, 2))
// res1: shapeless.::[Int,shapeless.::[Int,shapeless.HNil]] = 1 :: 2 ::
HNil
getRepr(Rect(Vec(0, 0), Vec(5, 5)))
// res2: shapeless.::[Vec,shapeless.::[Vec,shapeless.HNil]] = Vec(0,0)
:: Vec(5,5) :: HNil
without type members this would be impossible :
trait Generic2[A, Repr]
def getRepr2[A, R](value: A)(implicit generic: Generic2[A, R]): R =
???
We would have had to pass the desired value of Repr to getRepr as a
type parameter, effec vely making getRepr useless. The intui ve
take-away from this is that type parameters are useful as “inputs” and
type members are useful as “outputs”.
please see the shapeless guide for details.