IoC avoid to inject container - inversion-of-control

I am working with IoC and more precisely with windsor and I have an amletic doubt about one thing.
Right now I am implementing the DDD Command layer so for each command I have a concrete class as following
public class CreateUserCommand : IDomainCommand{
/// implementation
}
Each command has 1 or more handlers with the following implementation
public class CreateUserHandler : IDomainCommandHandler<CreateUserCommand>
{
public void Handle(CreateUserCommand command)
{
/// implementation
}
}
The problem arise with my Command Dispatcher. I am using the following form at the moment
public class CommandDispatcher : ICommandDispatcher
{
private IWindsorContainer container;
public CommandDispatcher(IWindsorContainer container)
{
this.container = container;
}
public void Dispatch<T>(T command)
{
var commandHandler = container.Resolve<ICommandHandler<T>>();
commandHandler.Handle(command);
}
}
What I don't like is the awareness of the dispatcher about the IoC container but in the same way I don't know how I can sort of resolve the handlers only when I need them.
Shell I inject an handler factory inside the Dispatcher and use it to resolve my handlers at runtime?

I'd use the typed factory facility to create a factory to replace the container usage. Conceptually the idea is the same, but it removes the dependency on the container.
The factory (no implementation, the facility takes care of that):
public interface ICommandHandlerFactory
{
ICommandHandler<T> Create<T>();
}
Registration:
// requires Castle.Facilities.TypedFactory namespace
windsorContainer.AddFacility<TypedFactoryFacility>();
// AsFactory() is an extension method in the same namespace
windsorContainer.Register(Component.For<ICommandHandlerFactory>().AsFactory());
Then in your class:
public class CommandDispatcher : ICommandDispatcher
{
private ICommandHandlerFactory commandHandlerFactory;
public CommandDispatcher(ICommandHandlerFactory commandHandlerFactory)
{
this.commandHandlerFactory = commandHandlerFactory;
}
public void Dispatch<T>(T command)
{
var commandHandler = commandHandlerFactory.Create<T>();
commandHandler.Handle(command);
}
}

It's okay for infrastructure code that is part of your composition root to take a dependency on the container. This is not an implementation of the Service Locator anti-pattern, since the Service Locator is about role and not mechanics.
In other words, as long as your CommandDispatcher is part of the composition root (and contains just infrastructure, no business logic) it is okay to let it depend on the container.

Related

Why middleware in ASP.NET Core requires specific semantics, but not an interface?

As known, IApplicationBuilder of the method Configure (class Startup) in ASP.NET Core requires specific semantics (to have method 'Invoke' with input parameter of HttpContext type and Task as return value). But why it's not implemented as interface? I can write something like it:
public class FakeMiddleware
{
}
and register it:
app.UseMiddleware<FakeMiddleware>();
and we'll get an runtime error. Of course, it's trivial thing and easy to be found and fix, but it's implemented so rough, without interface?
The Invoke method is flexible and you can ask for additional parameters. ASP.NET will inject the additional parameters using the application's service configuration.
public async Task Invoke(HttpContext ctx,
IHostingEnvironment host,
ISomethingElse service)
{
// ...
}
C# interface definitions can't provide this flexibility in a nice way.
Since AspNetCore2.0 you can set middleware which implements interface IMiddleware.
public class InterfaceMiddleware : IMiddleware
{
private InterfaceMiddlewareOptions _opts;
public InterfaceMiddleware(IOptions<InterfaceMiddlewareOptions> opts)
{
_opts = opts.Value;
}
public async Task InvokeAsync(HttpContext context, RequestDelegate next)
{
await context.Response.WriteAsync(_opts.Message);
}
}
In addition to app.UseMiddleware<InterfaceMiddleware>(). You need to register your middleware in DI(singleton lifetime is not required).
public void ConfigureServices(IServiceCollection services)
{
services.Configure<InterfaceMiddlewareOptions>(opts =>
{
opts.Message = "IMiddleware interface is implemented";
});
services.AddSingleton<InterfaceMiddleware>();
}

How do I combine a Controlled Lifetime relationship type (i.e. Owned<T>) with a delegate factory?

In my application, I have a service that requires a constructor parameter not resolved by Autofac, that I instantiate using a delegate factory:
public class Service
{
public Service(string parameter /*, ... other dependencies */)
{
}
public delegate Service Factory(string parameter);
}
This works great! I really love this feature.
I also like the Controlled Lifetime relationship, so I can let my component depend on a Func<Owned<ISomething>> like this:
public class Component
{
private Func<Owned<ISomething>> _somethingFactory;
/* constructor omitted for brevity */
public void DoSomethingUseful()
{
using (var ownedSomething = _somethingFactory())
{
/* Lots of useful code here */
}
}
}
My problem is that now I want to combine the two. I can't have an instance of Func<Owned<Service>> injected, because it needs that parameter, so my current solution is to abstract the factory away into another service, say IServiceFactory:
public interface IServiceFactory
{
Service Create(string parameter);
}
...implemented as such:
public class ServiceFactory : IServiceFactory
{
private Service.Factory _internalFactory;
public ServiceFactory(Service.Factory internalFactory)
{
_internalFactory = internalFactory;
}
public Service Create(string parameter)
{
return _internalFactory(parameter);
}
}
My component then becomes this:
public class Component
{
Func<Owned<IServiceFactory>> _serviceFactoryFactory;
/* ... */
}
The need for such a field name leaves a bad taste in my mouth to the point that I suspect there must be a cleaner way to handle this case.
Is there another way?
You could change your injected factory to include the string parameter:
private Func<string, Owned<ISomething>> _somethingFactory;
Then you can pass the string to the factory when you want to create a new instance:
public void DoSomethingUseful()
{
using (var ownedSomething = _somethingFactory("my parameter"))
{
/* Lots of useful code here */
}
}
I've created a .NET Fiddle with a small working sample.

Getting TinyIoc current container in a Nancy project

I'm building a small Nancy web project.
In a method of one of my classes (not a nancy module), I would like to basically do:
var myThing = TinyIoC.TinyIoCContainer.Current.Resolve<IMyThing>();
However, there is only one registration in .Current (non public members, _RegisteredTypes) which is:
TinyIoC.TinyIoCContainer.TypeRegistration
Naturally, in my above code, I'm getting:
Unable to resolve type: My.Namespace.IMyThing
So, I guess I'm not getting the same container registered in my bootstrapper?
Is there a way to get at it?
EDIT
To flesh out a bit more of what I'm trying to do:
Basically, my url structure looks something like:
/{myType}/{myMethod}
So, the idea being, going to: /customer/ShowAllWithTheNameAlex would load the Customer service, and execute the showAllWithTheNameAlex method
How I do this is:
public interface IService
{
void DoSomething();
IEnumerable<string> GetSomeThings();
}
I then have an abstract base class, with a method GetService that returns the service.
It's here that i'm trying to use the TinyIoC.TinyIoCContainer.Current.Resolve();
In this case, it would be TinyIoC.TinyIoCContainer.Current.Resolve("typeName");
public abstract class Service : IService
{
abstract void DoSomething();
abstract IEnumerable<string> GetSomeThings();
public static IService GetService(string type)
{
//currently, i'm doing this with reflection....
}
}
Here's my implementation of the service.
public class CustomerService : Service
{
public void DoSomething()
{
//do stuff
}
public IEnumerable<string> GetSomeThings()
{
//return stuff
}
public IEnumerable<Customer> ShowAllWithTheNameAlex()
{
//return
}
}
Finally, I have my Nancy Module, that looks like:
public class MyModule : NancyModule
{
public MyModule()
{
Get["/{typeName}/{methodName}"] = p => ExecuteMethod(p.typeName, p.methodName);
}
private dynamic ExecuteMethod(string typeName, string methodName)
{
var service = Service.GetService(typeName);
var result = service.GetType().GetMethod(methodName).Invoke(service, null);
//do stuff
return result; //or whatever
}
}
#alexjamesbrown - The short answer is, you don't. Nancy was specifically designed so that you did not deal with the container directly. You mention that the class, that you want to take a dependency on IMyThing, is not a NancyModule. Well this is not an issue, as long as one of your modules has a reference to it, then those dependencies can also have their own dependencies that will be satisfied at runtime.
public interface IGreetingMessageService
{
string GetMessage();
}
public class GreetingMessageService: IGreetingMessageService
{
public string GetMessage()
{
return "Hi!";
}
}
public interface IGreeter
{
string Greet();
}
public class Greeter
{
private readonly IGreetingMessageService service;
public Greeter(IGreetingMessageService service)
{
this.service = service;
}
public string Greet()
{
return this.service.GetMessage();
}
}
public class GreetingsModule : NancyModule
{
public GreetingModule(IGreeter greeter)
{
Get["/"] = x => greeter.Greet();
}
}
The above will work just fine and Greeter will have it's dependency on IGreetingMessageService satisfied at runtime
I have had a very similar issue, needing to "share" the container. The reason this is an issue is that my program runs as a service using Nancy self hosting to provide a REST API. My modules have dependencies which are injected by Nancy itself, but the other parts of the app which are not referenced from modules also need dependencies injected.
Multiple containers are not a sensible option here (or anywhere really), I need to share the container between Nancy and the rest of the app.
I simply did the following
(I'm using Autofac but I suspect that TinyIoC in similar)
public class Bootstrapper : AutofacNancyBootstrapper
{
private static readonly Lazy<ILifetimeScope> container = new Lazy<ILifetimeScope>(RegisterTypes);
public static ILifetimeScope Container => container.Value;
protected override ILifetimeScope GetApplicationContainer()
{
return container.Value;
}
// Create container and register my types
private static ILifetimeScope RegisterTypes()
{
var builder = new ContainerBuilder();
// Register all my own types.....
return builder.Build();
}
}
Then, in my main code, I can use the container myself
public class Program
{
public static void Main(string[] args)
{
// Resolve main service with all its dependencies
var service = Bootstrapper.Container.Resolve<Service>();
service.Run();
}
}
As my NancyHost is within the Service, the container is constructed (once) upon its first use in main, this static is then used when Nancy gets round to creating the Bootstrapper itself.
In an ideal world, I wouldn't really want a globally accessible container, normally it would be local to the main function.
In this particular case "not dealing with the container directly" is highly problematic:
public interface IFoo {}
public class Foo : IFoo { public Foo(string bar) {} }
Assume IFoo already is a constructor dependency of a Nancy module.
Note the Foo constructor's string dependency. I need to communicate to the container to use that constructor for an IFoo singleton, when encountered as a Nancy module dependency. I need to register that on the TinyIoC instance NancyFx uses, and pass in the actual value of bar.

AOP using Windsor and bulk registering classes

I am trying to configure an application such that types from assemblyA can be used by my console to allow for logging in an AOP style. The JournalInterceptor will just write out method calls, input and maybe output arguments to a log file or datastore of some kind.
I can register one type at a time but I would like to register all types in one go. Once I get going I may add some filtering to the registered types but I am missing something.
I am trying to use Classes.FromAssemblyContaining but am not sure how to get at an IRegistration instance for the call to WindsorContainer::Register
Any clues?
// otherAssembly.cs
namespace assemblyA
{
public class Foo1 { public virtual void What(){} }
public class Foo2 { public virtual void Where(){} }
}
// program.cs
namespace console
{
using assemblyA;
public class JournalInterceptor : IInterceptor {}
public class Program
{
public static void Main()
{
var container = new Castle.Windsor.WindsorContainer()
.Register(
Component.For<JournalInterceptor>().LifeStyle.Transient,
// works but can't be the best way
Component.For<Foo1>().LifeStyle.Transient
.Interceptors<JournalInterceptor>(),
Component.For<Foo2>().LifeStyle.Transient,
.Interceptors<JournalInterceptor>(),
// how do I do it this way
Classes.FromAssemblyContaining<Foo1>()
.Pick()
.LifestyleTransient()
.Interceptors<JournalInterceptor>()
);
Foo1 foo = container.Resolve<Foo1>();
}
}
}
Implement a Pointcut. In Castle Windsor this is done by implementing the IModelInterceptorsSelector interface.
It would go something like this:
public class JournalPointcut : IModelInterceptorsSelector
{
public bool HasInterceptors(ComponentModel model)
{
return true; // intercept everything - probably not a good idea, though
}
public InterceptorReference[] SelectInterceptors(
ComponentModel model, InterceptorReference[] interceptors)
{
return new[]
{
InterceptorReference.ForType<JournalInterceptor>()
}.Concat(interceptors).ToArray();
}
}
Then register the Interceptor and the Pointcut with the container:
this.container.Register(Component.For<JounalInterceptor>());
this.container.Kernel.ProxyFactory.AddInterceptorSelector(new JournalPointcut());
For in-depth explanation, you may want to see this recording.

How to dispose resources with dependency injection

I'm using StructureMap to resolve references to my repository class. My repository interface implements IDisposable, e.g.
public interface IMyRepository : IDisposable
{
SomeClass GetById(int id);
}
An implementation of the interface using Entity Framework:
public MyRepository : IMyRepository
{
private MyDbContext _dbContext;
public MyDbContext()
{
_dbContext = new MyDbContext();
}
public SomeClass GetById(int id)
{
var query = from x in _dbContext
where x.Id = id
select x;
return x.FirstOrDefault();
}
public void Dispose()
{
_dbContext.Dispose();
}
}
Anyway as mentioned I'm using StructureMap to resolve IMyRepository. So when, where and how should I call my dispose method?
WARNING: please note that my views have changed, and you should consider the following advise outdated. Please see this answer for an updated view: https://stackoverflow.com/a/30287923/264697
While DI frameworks can manage lifetime of objects for you and some could even dispose objects for you after you're done using with them, it makes object disposal just too implicit. The IDisposable interface is created because there was the need of deterministic clean-up of resources. Therefore, in the context of DI, I personally like to make this clean-up very explicit. When you make it explicit, you've got basically two options: 1. Configure the DI to return transient objects and dispose these objects yourself. 2. Configure a factory and instruct the factory to create new instances.
I favor the second approach over the first, because especially when doing Dependency Injection, your code isn't as clean as it could be. Look for instance at this code:
public sealed class Client : IDisposable
{
private readonly IDependency dependency;
public Client(IDependency dependency)
{
this. dependency = dependency;
}
public void Do()
{
this.dependency.DoSomething();
}
public Dispose()
{
this.dependency.Dispose();
}
}
While this code explicitly disposes the dependency, it could raise some eyebrows to readers, because resources should normally only be disposed by the owner of the resource. Apparently, the Client became the owner of the resource, when it was injected.
Because of this, I favor the use of a factory. Look for instance at this example:
public sealed class Client
{
private readonly IDependencyFactory factory;
public Client(IDependencyFactory factory)
{
this.factory = factory;
}
public void Do()
{
using (var dependency = this.factory.CreateNew())
{
dependency.DoSomething();
}
}
}
This example has the exact same behavior as the previous example, but see how the Client class doesn't have to implement IDisposable anymore, because it creates and disposes the resource within the Do method.
Injecting a factory is the most explicit way (the path of least surprise) to do this. That's why I prefer this style. Downside of this is that you often need to define more classes (for your factories), but I personally don't mind.
RPM1984 asked for a more concrete example.
I would not have the repository implement IDisposable, but have a Unit of Work that implements IDisposable, controls/contains repositories and have a factory that knows how to create new unit of works. With that in mind, the above code would look like this:
public sealed class Client
{
private readonly INorthwindUnitOfWorkFactory factory;
public Client(INorthwindUnitOfWorkFactory factory)
{
this.factory = factory;
}
public void Do()
{
using (NorthwindUnitOfWork db =
this.factory.CreateNew())
{
// 'Customers' is a repository.
var customer = db.Customers.GetById(1);
customer.Name = ".NET Junkie";
db.SubmitChanges();
}
}
}
In the design I use, and have described here, I use a concrete NorthwindUnitOfWork class that wraps an IDataMapper that is the gateway to the underlying LINQ provider (such as LINQ to SQL or Entity Framework). In sumary, the design is as follows:
An INorthwindUnitOfWorkFactory is injected in a client.
The particular implementation of that factory creates a concrete NorthwindUnitOfWork class and injects a O/RM specific IDataMapper class into it.
The NorthwindUnitOfWork is in fact a type-safe wrapper around the IDataMapper and the NorthwindUnitOfWork requests the IDataMapper for repositories and forwards requests to submit changes and dispose to the mapper.
The IDataMapper returns Repository<T> classes and a repository implements IQueryable<T> to allow the client to use LINQ over the repository.
The specific implementation of the IDataMapper holds a reference to the O/RM specific unit of work (for instance EF's ObjectContext). For that reason the IDataMapper must implement IDisposable.
This results in the following design:
public interface INorthwindUnitOfWorkFactory
{
NorthwindUnitOfWork CreateNew();
}
public interface IDataMapper : IDisposable
{
Repository<T> GetRepository<T>() where T : class;
void Save();
}
public abstract class Repository<T> : IQueryable<T>
where T : class
{
private readonly IQueryable<T> query;
protected Repository(IQueryable<T> query)
{
this.query = query;
}
public abstract void InsertOnSubmit(T entity);
public abstract void DeleteOnSubmit(T entity);
// IQueryable<T> members omitted.
}
The NorthwindUnitOfWork is a concrete class that contains properties to specific repositories, such as Customers, Orders, etc:
public sealed class NorthwindUnitOfWork : IDisposable
{
private readonly IDataMapper mapper;
public NorthwindUnitOfWork(IDataMapper mapper)
{
this.mapper = mapper;
}
// Repository properties here:
public Repository<Customer> Customers
{
get { return this.mapper.GetRepository<Customer>(); }
}
public void Dispose()
{
this.mapper.Dispose();
}
}
What's left is an concrete implementation of the INorthwindUnitOfWorkFactory and a concrete implementation of the IDataMapper. Here's one for Entity Framework:
public class EntityFrameworkNorthwindUnitOfWorkFactory
: INorthwindUnitOfWorkFactory
{
public NorthwindUnitOfWork CreateNew()
{
var db = new ObjectContext("name=NorthwindEntities");
db.DefaultContainerName = "NorthwindEntities";
var mapper = new EntityFrameworkDataMapper(db);
return new NorthwindUnitOfWork(mapper);
}
}
And the EntityFrameworkDataMapper:
public sealed class EntityFrameworkDataMapper : IDataMapper
{
private readonly ObjectContext context;
public EntityFrameworkDataMapper(ObjectContext context)
{
this.context = context;
}
public void Save()
{
this.context.SaveChanges();
}
public void Dispose()
{
this.context.Dispose();
}
public Repository<T> GetRepository<T>() where T : class
{
string setName = this.GetEntitySetName<T>();
var query = this.context.CreateQuery<T>(setName);
return new EntityRepository<T>(query, setName);
}
private string GetEntitySetName<T>()
{
EntityContainer container =
this.context.MetadataWorkspace.GetEntityContainer(
this.context.DefaultContainerName, DataSpace.CSpace);
return (
from item in container.BaseEntitySets
where item.ElementType.Name == typeof(T).Name
select item.Name).First();
}
private sealed class EntityRepository<T>
: Repository<T> where T : class
{
private readonly ObjectQuery<T> query;
private readonly string entitySetName;
public EntityRepository(ObjectQuery<T> query,
string entitySetName) : base(query)
{
this.query = query;
this.entitySetName = entitySetName;
}
public override void InsertOnSubmit(T entity)
{
this.query.Context.AddObject(entitySetName, entity);
}
public override void DeleteOnSubmit(T entity)
{
this.query.Context.DeleteObject(entity);
}
}
}
You can find more information about this model here.
UPDATE December 2012
This an an update written two years after my original answer. The last two years much has changed in the way I try to design the systems I'm working on. Although it has suited me in the past, I don't like to use the factory approach anymore when dealing with the Unit of Work pattern. Instead I simply inject a Unit of Work instance into consumers directly. Whether this design is feasibly for you however, depends a lot on the way your system is designed. If you want to read more about this, please take a look at this newer Stackoverflow answer of mine: One DbContext per web request…why?
If you want to get it right, i'd advise on a couple of changes:
1 - Don't have private instances of the data context in the repository. If your working with multiple repositories then you'll end up with multiple contexts.
2 - To solve the above - wrap the context in a Unit of Work. Pass the unit of work to the Repositories via the ctor: public MyRepository(IUnitOfWork uow)
3 - Make the Unit of Work implement IDisposable. The Unit of Work should be "newed up" when a request begins, and therefore should be disposed when the request finishes. The Repository should not implement IDisposable, as it is not directly working with resources - it is simply mitigating them. The DataContext / Unit of Work should implement IDispoable.
4 - Assuming you are using a web application, you do not need to explicitly call dispose - i repeat, you do not need to explicitly call your dispose method. StructureMap has a method called HttpContextBuildPolicy.DisposeAndClearAll();. What this does is invoke the "Dispose" method on any HTTP-scoped objects that implement IDisposable. Stick this call in Application_EndRequest (Global.asax). Also - i believe there is an updated method, called ReleaseAllHttpScopedObjects or something - can't remember the name.
Instead of adding Dispose to IMyRepository, you could declare IMyRepository like this:
public interface IMyRepository: IDisposable
{
SomeClass GetById(int id);
}
This way, you ensure all repository will call Dispose sometimes, and you can use the C# "using" pattern on a Repository object:
using (IMyRepository rep = GetMyRepository(...))
{
... do some work with rep
}