I am building an Arbitrary[Source] in my specification like so:
implicit def arbSource = Arbitrary {
for {
i: Int <- Gen.posNum[Int]
ss: List[String] <- Gen.listOfN(i, Gen.alphaStr)
} yield Source.fromString(ss.mkString("\n"))
}
How can I make the follow check pass? (i.e. how to limit i to be within a range)
def test = arbSource{s => s.getLines().toSeq.size must beBetween(1, 200)}
Use Gen.choose(min, max) instead of Gen.posNum[Int].
Related
I am trying to do some handson with scala basic operations and got stuck here in the following sample code
def insuranceRateQuote(a: Int, tickets:Int) : Either[Exception, Double] = {
// ... something
Right(Double)
}
def parseInsuranceQuoteFromWebForm(age: String, numOfTickets: String) : Either[Exception, Double]= {
try{
val a = Try(age.toInt)
val tickets = Try(numOfTickets.toInt)
for{
aa <- a
t <- tickets
} yield insuranceRateQuote(aa,t) // ERROR HERE
} catch {
case _ => Left(new Exception)}
}
The Error I am getting is that it says found Try[Either[Exception,Double]]
I am not getting why it is wrapper under Try of Either
PS - This must not be the perfect way to do in scala so feel free to post your sample code :)
The key to understand is that for-comprehensions might transform what is inside the wrapper but will not change the wrapper itself. The reason is because for-comprehension de-sugar to map/flatMap calls on the wrapper determined in the first step of the chain. For example consider the following snippet
val result: Try[Int] = Try(41).map(v => v + 1)
// result: scala.util.Try[Int] = Success(42)
Note how we transformed the value inside the Try wrapper from 41 to 42 however the wrapper remained unchanged. Alternatively we could express the same thing using a for-comprehension
val result: Try[Int] = for { v <- Try(41) } yield v + 1
// result: scala.util.Try[Int] = Success(42)
Note how the effect is exactly the same. Now consider the following for comprehension which chains multiple steps
val result: Try[Int] =
for {
a <- Try(41) // first step determines the wrapper for all the other steps
b <- Try(1)
} yield a + b
// result: scala.util.Try[Int] = Success(42)
This expands to
val result: Try[Int] =
Try(41).flatMap { (a: Int) =>
Try(1).map { (b: Int) => a + b }
}
// result: scala.util.Try[Int] = Success(42)
where again we see the result is the same, namely, a value transformed inside the wrapper but wrapper remained untransformed.
Finally consider
val result: Try[Either[Exception, Int]] =
for {
a <- Try(41) // first step still determines the top-level wrapper
b <- Try(1)
} yield Right(a + b) // here we wrap inside `Either`
// result: scala.util.Try[Either[Exception,Int]] = Success(Right(42))
The principle remains the same - we did wrap a + b inside Either however this does not affect the top-level outer wrapper which is still Try.
Mario Galic's answer already explains the problem with your code, but I'd fix it differently.
Two points:
Either[Exception, A] (or rather, Either[Throwable, A]) is kind of equivalent to Try[A], with Left taking the role of Failure and Right the role of Success.
The outer try/catch is not useful because the exceptions should be captured by working in Try.
So you probably want something like
def insuranceRateQuote(a: Int, tickets:Int) : Try[Double] = {
// ... something
Success(someDouble)
}
def parseInsuranceQuoteFromWebForm(age: String, numOfTickets: String): Try[Double] = {
val a = Try(age.toInt)
val tickets = Try(numOfTickets.toInt)
for{
aa <- a
t <- tickets
q <- insuranceRateQuote(aa,t)
} yield q
}
A bit unfortunately, this does a useless map(q => q) if you figure out what the comprehension does, so you can write it more directly as
a.flatMap(aa => tickets.flatMap(t => insuranceRateQuote(aa,t)))
I wrote this simple program in my attempt to learn how Cats Writer works
import cats.data.Writer
import cats.syntax.applicative._
import cats.syntax.writer._
import cats.instances.vector._
object WriterTest extends App {
type Logged2[A] = Writer[Vector[String], A]
Vector("started the program").tell
val output1 = calculate1(10)
val foo = new Foo()
val output2 = foo.calculate2(20)
val (log, sum) = (output1 + output2).pure[Logged2].run
println(log)
println(sum)
def calculate1(x : Int) : Int = {
Vector("came inside calculate1").tell
val output = 10 + x
Vector(s"Calculated value ${output}").tell
output
}
}
class Foo {
def calculate2(x: Int) : Int = {
Vector("came inside calculate 2").tell
val output = 10 + x
Vector(s"calculated ${output}").tell
output
}
}
The program works and the output is
> run-main WriterTest
[info] Compiling 1 Scala source to /Users/Cats/target/scala-2.11/classes...
[info] Running WriterTest
Vector()
50
[success] Total time: 1 s, completed Jan 21, 2017 8:14:19 AM
But why is the vector empty? Shouldn't it contain all the strings on which I used the "tell" method?
When you call tell on your Vectors, each time you create a Writer[Vector[String], Unit]. However, you never actually do anything with your Writers, you just discard them. Further, you call pure to create your final Writer, which simply creates a Writer with an empty Vector. You have to combine the writers together in a chain that carries your value and message around.
type Logged[A] = Writer[Vector[String], A]
val (log, sum) = (for {
_ <- Vector("started the program").tell
output1 <- calculate1(10)
foo = new Foo()
output2 <- foo.calculate2(20)
} yield output1 + output2).run
def calculate1(x: Int): Logged[Int] = for {
_ <- Vector("came inside calculate1").tell
output = 10 + x
_ <- Vector(s"Calculated value ${output}").tell
} yield output
class Foo {
def calculate2(x: Int): Logged[Int] = for {
_ <- Vector("came inside calculate2").tell
output = 10 + x
_ <- Vector(s"calculated ${output}").tell
} yield output
}
Note the use of for notation. The definition of calculate1 is really
def calculate1(x: Int): Logged[Int] = Vector("came inside calculate1").tell.flatMap { _ =>
val output = 10 + x
Vector(s"calculated ${output}").tell.map { _ => output }
}
flatMap is the monadic bind operation, which means it understands how to take two monadic values (in this case Writer) and join them together to get a new one. In this case, it makes a Writer containing the concatenation of the logs and the value of the one on the right.
Note how there are no side effects. There is no global state by which Writer can remember all your calls to tell. You instead make many Writers and join them together with flatMap to get one big one at the end.
The problem with your example code is that you're not using the result of the tell method.
If you take a look at its signature, you'll see this:
final class WriterIdSyntax[A](val a: A) extends AnyVal {
def tell: Writer[A, Unit] = Writer(a, ())
}
it is clear that tell returns a Writer[A, Unit] result which is immediately discarded because you didn't assign it to a value.
The proper way to use a Writer (and any monad in Scala) is through its flatMap method. It would look similar to this:
println(
Vector("started the program").tell.flatMap { _ =>
15.pure[Logged2].flatMap { i =>
Writer(Vector("ended program"), i)
}
}
)
The code above, when executed will give you this:
WriterT((Vector(started the program, ended program),15))
As you can see, both messages and the int are stored in the result.
Now this is a bit ugly, and Scala actually provides a better way to do this: for-comprehensions. For-comprehension are a bit of syntactic sugar that allows us to write the same code in this way:
println(
for {
_ <- Vector("started the program").tell
i <- 15.pure[Logged2]
_ <- Vector("ended program").tell
} yield i
)
Now going back to your example, what I would recommend is for you to change the return type of compute1 and compute2 to be Writer[Vector[String], Int] and then try to make your application compile using what I wrote above.
I am reading a TSV file and using using something like this:
case class Entry(entryType: Int, value: Int)
def filterEntries(): Iterator[Entry] = {
for {
line <- scala.io.Source.fromFile("filename").getLines()
} yield new Entry(line.split("\t").map(x => x.toInt))
}
Now I am both interested in filtering out entries whose entryType are set to 0 and ignoring lines with column count greater or lesser than 2 (that does not match the constructor). I was wondering if there's an idiomatic way to achieve this may be using pattern matching and unapply method in a companion object. The only thing I can think of is using .filter on the resulting iterator.
I will also accept solution not involving for loop but that returns Iterator[Entry]. They solutions must be tolerant to malformed inputs.
This is more state-of-arty:
package object liner {
implicit class R(val sc: StringContext) {
object r {
def unapplySeq(s: String): Option[Seq[String]] = sc.parts.mkString.r unapplySeq s
}
}
}
package liner {
case class Entry(entryType: Int, value: Int)
object I {
def unapply(s: String): Option[Int] = util.Try(s.toInt).toOption
}
object Test extends App {
def lines = List("1 2", "3", "", " 4 5 ", "junk", "0, 100000", "6 7 8")
def entries = lines flatMap {
case r"""\s*${I(i)}(\d+)\s+${I(j)}(\d+)\s*""" if i != 0 => Some(Entry(i, j))
case __________________________________________________ => None
}
Console println entries
}
}
Hopefully, the regex interpolator will make it into the standard distro soon, but this shows how easy it is to rig up. Also hopefully, a scanf-style interpolator will allow easy extraction with case f"$i%d".
I just started using the "elongated wildcard" in patterns to align the arrows.
There is a pupal or maybe larval regex macro:
https://github.com/som-snytt/regextractor
You can create variables in the head of the for-comprehension and then use a guard:
edit: ensure length of array
for {
line <- scala.io.Source.fromFile("filename").getLines()
arr = line.split("\t").map(x => x.toInt)
if arr.size == 2 && arr(0) != 0
} yield new Entry(arr(0), arr(1))
I have solved it using the following code:
import scala.util.{Try, Success}
val lines = List(
"1\t2",
"1\t",
"2",
"hello",
"1\t3"
)
case class Entry(val entryType: Int, val value: Int)
object Entry {
def unapply(line: String) = {
line.split("\t").map(x => Try(x.toInt)) match {
case Array(Success(entryType: Int), Success(value: Int)) => Some(Entry(entryType, value))
case _ =>
println("Malformed line: " + line)
None
}
}
}
for {
line <- lines
entryOption = Entry.unapply(line)
if entryOption.isDefined
} yield entryOption.get
The left hand side of a <- or = in a for-loop may be a fully-fledged pattern. So you may write this:
def filterEntries(): Iterator[Int] = for {
line <- scala.io.Source.fromFile("filename").getLines()
arr = line.split("\t").map(x => x.toInt)
if arr.size == 2
// now you may use pattern matching to extract the array
Array(entryType, value) = arr
if entryType == 0
} yield Entry(entryType, value)
Note that this solution will throw a NumberFormatException if a field is not convertible to an Int. If you do not want that, you'll have to encapsulate x.toInt with a Try and pattern match again.
I have a lazily-calculated sequence of objects, where the lazy calculation depends only on the index (not the previous items) and some constant parameters (p:Bar below). I'm currently using a Stream, however computing the stream.init is typically wasteful.
However, I really like that using Stream[Foo] = ... gets me out of implementing a cache, and has very light declaration syntax while still providing all the sugar (like stream(n) gets element n). Then again, I could just be using the wrong declaration:
class FooSrcCache(p:Bar) {
val src : Stream[FooSrc] = {
def error() : FooSrc = FooSrc(0,p)
def loop(i: Int): Stream[FooSrc] = {
FooSrc(i,p) #:: loop(i + 1)
}
error() #:: loop(1)
}
def apply(max: Int) = src(max)
}
Is there a Stream-comparable base Scala class, that is indexed instead of linear?
PagedSeq should do the job for you:
class FooSrcCache(p:Bar) {
private def fill(buf: Array[FooSrc], start: Int, end: Int) = {
for (i <- start until end) {
buf(i) = FooSrc(i,p)
}
end - start
}
val src = new PagedSeq[FooSrc](fill _)
def apply(max: Int) = src(max)
}
Note that this might calculate FooSrc with higher indices than you requested.
I'm trying to do some experiment with Scala. I'd like to repeat this experiment (randomized) until the expected result comes out and get that result. If I do this with either while or do-while loop, then I need to write (suppose 'body' represents the experiment and 'cond' indicates if it's expected):
do {
val result = body
} while(!cond(result))
It does not work, however, since the last condition cannot refer to local variables from the loop body. We need to modify this control abstraction a little bit like this:
def repeat[A](body: => A)(cond: A => Boolean): A = {
val result = body
if (cond(result)) result else repeat(body)(cond)
}
It works somehow but is not perfect for me since I need to call this method by passing two parameters, e.g.:
val result = repeat(body)(a => ...)
I'm wondering whether there is a more efficient and natural way to do this so that it looks more like a built-in structure:
val result = do { body } until (a => ...)
One excellent solution for body without a return value is found in this post: How Does One Make Scala Control Abstraction in Repeat Until?, the last one-liner answer. Its body part in that answer does not return a value, so the until can be a method of the new AnyRef object, but that trick does not apply here, since we want to return A rather than AnyRef. Is there any way to achieve this? Thanks.
You're mixing programming styles and getting in trouble because of it.
Your loop is only good for heating up your processor unless you do some sort of side effect within it.
do {
val result = bodyThatPrintsOrSomething
} until (!cond(result))
So, if you're going with side-effecting code, just put the condition into a var:
var result: Whatever = _
do {
result = bodyThatPrintsOrSomething
} until (!cond(result))
or the equivalent:
var result = bodyThatPrintsOrSomething
while (!cond(result)) result = bodyThatPrintsOrSomething
Alternatively, if you take a functional approach, you're going to have to return the result of the computation anyway. Then use something like:
Iterator.continually{ bodyThatGivesAResult }.takeWhile(cond)
(there is a known annoyance of Iterator not doing a great job at taking all the good ones plus the first bad one in a list).
Or you can use your repeat method, which is tail-recursive. If you don't trust that it is, check the bytecode (with javap -c), add the #annotation.tailrec annotation so the compiler will throw an error if it is not tail-recursive, or write it as a while loop using the var method:
def repeat[A](body: => A)(cond: A => Boolean): A = {
var a = body
while (cond(a)) { a = body }
a
}
With a minor modification you can turn your current approach in a kind of mini fluent API, which results in a syntax that is close to what you want:
class run[A](body: => A) {
def until(cond: A => Boolean): A = {
val result = body
if (cond(result)) result else until(cond)
}
}
object run {
def apply[A](body: => A) = new run(body)
}
Since do is a reserved word, we have to go with run. The result would now look like this:
run {
// body with a result type A
} until (a => ...)
Edit:
I just realized that I almost reinvented what was already proposed in the linked question. One possibility to extend that approach to return a type A instead of Unit would be:
def repeat[A](body: => A) = new {
def until(condition: A => Boolean): A = {
var a = body
while (!condition(a)) { a = body }
a
}
}
Just to document a derivative of the suggestions made earlier, I went with a tail-recursive implementation of repeat { ... } until(...) that also included a limit to the number of iterations:
def repeat[A](body: => A) = new {
def until(condition: A => Boolean, attempts: Int = 10): Option[A] = {
if (attempts <= 0) None
else {
val a = body
if (condition(a)) Some(a)
else until(condition, attempts - 1)
}
}
}
This allows the loop to bail out after attempts executions of the body:
scala> import java.util.Random
import java.util.Random
scala> val r = new Random()
r: java.util.Random = java.util.Random#cb51256
scala> repeat { r.nextInt(100) } until(_ > 90, 4)
res0: Option[Int] = Some(98)
scala> repeat { r.nextInt(100) } until(_ > 90, 4)
res1: Option[Int] = Some(98)
scala> repeat { r.nextInt(100) } until(_ > 90, 4)
res2: Option[Int] = None
scala> repeat { r.nextInt(100) } until(_ > 90, 4)
res3: Option[Int] = None
scala> repeat { r.nextInt(100) } until(_ > 90, 4)
res4: Option[Int] = Some(94)