How to iterate over a sequence in Common Lisp with loop? - lisp

Previously I had been using "being the elements of" feature of loop to iterate over a sequence of an unknown type. I just found out that "being the elements of" is not provided in every implementation of Common Lisp and am wondering if there is any clean way to iterate over a sequence using loop. The best solution I have been able to come with is to coerce the sequence to a list and then iterate over that.

No, LOOP does not provide such a feature directly. If your LOOP implementation is extensible (which the standard says nothing about, too), you might be able to implement such a feature.
LOOP has clauses to iterate over lists - for item in list - and a clause to iterate over a vector - for e across vector - note that strings are also vectors, one-dimensional arrays. But not both together.
Otherwise use MAP or MAP-INTO to iterate over sequences.
The ITERATE macro provides such a feature: for i in-sequence seq.

Related

Is there any benefit of working with an Iterator over a List

Is there any benefit of manipulating an Iterator over or List ?
I need to know if concatenating 2 iterators is better that concatenating to List ?
In a sense what the fundamental difference between working with iterator over the actual collection.
An Iterator isn't an actual data structure, although it behaves similar to one. It is just a traversal pointer to some actual data structure. Thus, unlike in an actual data structure, an Iterator can't "go back," that is, access old elements. Once you've gone through an Iterator, you're done.
What's cool about Iterator is that you can give it a map, filter, or other transformation elements, and instead of actually modifying any existing data structure, it will instead apply the transformation the next time you ask for an element.
"Concatenating" two Iterators creates a new Iterator that wraps both of them.
On the other hand, Lists are actual collections and can be re-traversed.

In PureScript, how does List differ from Array?

In PureScript, how does List differ from Array?
What are the reasons to use one over the other?
The representation for Array is a JavaScript array, whereas List is implemented as a cons (linked) list.
Lists have better performance characteristics when being built up item-by-item, or iterated over by taking an item from front each time - basically List has O(1) cons and uncons, vs O(n) for Array.
Take a look at the documentation for Array and List on Pursuit for more information about the running time of various operations.

Scala how to update values in immutable list

I have a immutable list and need a new copy of it with elements replaced at multiple index locations. The List.updated is an O(n) operation and can only replace one at a time. What is the efficient way of doing this? Thanks!
List is not a good fit if you need random element access/update. From the documentation:
This class is optimal for last-in-first-out (LIFO), stack-like access patterns. If you need another access pattern, for example, random access or FIFO, consider using a collection more suited to this than List.
More generally, what you need is an indexed sequence instead of a linear one (such as List). From the documentation of IndexedSeq:
Indexed sequences support constant-time or near constant-time element access and length computation. They are defined in terms of abstract methods apply for indexing and length.
Indexed sequences do not add any new methods to Seq, but promise efficient implementations of random access patterns.
The default concrete implementation of IndexedSeq is Vector, so you may consider using it.
Here's an extract from its documentation (emphasis added):
Vector is a general-purpose, immutable data structure. It provides random access and updates in effectively constant time, as well as very fast append and prepend. Because vectors strike a good balance between fast random selections and fast random functional updates, they are currently the default implementation of immutable indexed sequences
list
.iterator
.zipWithIndex
.map { case (index, element) => newElementFor(index) }
.toList

Which scala mutable list to use?

This is a followup question to No Scala mutable list
I want to use a mutable list in Scala. I can chose from
scala.collection.mutable.DoubleLinkedList
scala.collection.mutable.LinkedList
scala.collection.mutable.ListBuffer
scala.collection.mutable.MutableList
Which is nice, but what is the "standard", recommended, idiomatic scala way? I just want to use a list that I can add things to on the back.
In my case, I am using a HashMap, where the "lists" (I am meaning it in general sense) will be on value side. Then, I am reading something from a file and for every line, I want to find the right list in the hashmap and append the value to the list.
Depends what you need.
DoubleLinkedList is a linked list which allows you to traverse back-and-forth through the list of nodes. Use its prev and next references to go to the previous or the next node, respectively.
LinkedList is a singly linked list, so there are not prev pointers - if you only traverse to the next element of the list all the time, this is what you need.
EDIT: Note that the two above are meant to be used internally as building blocks for more complicated list structures like MutableLists which support efficient append, and mutable.Queues.
The two collections above both have linear-time append operations.
ListBuffer is a buffer class. Although it is backed by a singly linked list data structure, it does not expose the next pointer to the client, so you can only traverse it using iterators and the foreach.
Its main use is, however, as a buffer and an immutable list builder - you append elements to it via +=, and when you call result, you very efficiently get back a functional immutable.List. Unlike mutable and immutable lists, both append and prepend operations are constant-time - you can append at the end via += very efficiently.
MutableList is used internally, you usually do not use it unless you plan to implement a custom collection class based on the singly linked list data structure. Mutable queues, for example, inherit this class. MutableList class also has an efficient constant-time append operation, because it maintains a reference to the last node in the list.
The documentation's Concrete Mutable Collection Classes page (or the one for 2.12) has an overview of mutable list classes, including explanations on when to use which one.
If you want to append items you shouldn't use a List at all. Lists are good when you want to prepend items. Use ArrayBuffer instead.
I just want to use a list that I can add things to on the back.
Then choose something that implements Growable. I personally suggest one of the Buffer implementations.
I stay away from LinkedList and DoubleLinkedList, as they are present mainly as underlying implementation of other collections, but have quite a few bugs up to Scala 2.9.x. Starting with Scala 2.10.0, I expect the various bug fixes have brought them up to standard. Still, they lack some methods people expect, such as +=, which you'll find on collections based on them.

What is the prefered way in using the parallel collections in Scala?

At first I assumed that every collection class would receive an additional par method which would convert the collection to a fitting parallel data structure (like map returns the best collection for the element type in Scala 2.8).
Now it seems that some collection classes support a par method (e. g. Array) but others have toParSeq, toParIterable methods (e. g. List). This is a bit weird, since Array isn't used or recommended that often.
What is the reason for that? Wouldn't it be better to just have a par available on all collection classes doing the "right thing"?
If I have data which might be processed in parallel, what types should I use? The traits in scala.collection or the type of the implementation directly?
Or should I prefer Arrays now, because they seem to be cheaper to parallelize?
Lists aren't that well suited for parallel processing. The reason is that to get to the end of the list, you have to walk through every single element. Thus, you may as well just treat the list as an iterator, and thus may as well just use something more generic like toParIterable.
Any collection that has a fast index is a good candidate for parallel processing. This includes anything implementing LinearSeqOptimized, plus trees and hash tables. Array has as fast of an index as you can get, so it's a fairly natural choice. You can also use things like ArrayBuffer (which has a par method returning a ParArray).