I am trying to train a SOM using Encog3. There are two examples of doing this in encog-examples - one is training an XOR SOM where all the data is used for training until convergence, and the Color SOM where one out of 15 colors is sampled randomly at each of 1000 iterations. My question is if the second approach was so the example completed with adequate results in a short enough time or if there was a reason for this. If I were to train with all 15 input colors at each iteration, would it have created better results?
That depends on what results you are looking for. This is a very common example for SOM's. Here is a more lengthy description (not written by me) of exactly the same thing.
http://www.ai-junkie.com/ann/som/som2.html
The purpose of the example is to show how patterns emerge from the training of an SOM. Most of the color examples I've seen for SOM do it this way (online training). It causes the output to be more varied/random.
SOM's can be trained in batch. It is not a difficult modification to the example. If you are looking for quick convergence, then yes, you get better results. However, the example quickly converges to close to a single color, and very quickly. You do not get the animated convergence to several colors that most of these examples look for.
Related
I'm in the overtures of designing a prose imitation system. It will read a bunch of prose, then mimic it. It's mostly for fun so the mimicking prose doesn't need to make too much sense, but I'd like to make it as good as I can, with a minimal amount of effort.
My first idea is to use my example prose to train a classifying feed-forward neural network, which classifies its input as either part of the training data or not part. Then I'd like to somehow invert the neural network, finding new random inputs that also get classified by the trained network as being part of the training data. The obvious and stupid way of doing this is to randomly generate word lists and only output the ones that get classified above a certain threshold, but I think there is a better way, using the network itself to limit the search to certain regions of the input space. For example, maybe you could start with a random vector and do gradient descent optimisation to find a local maximum around the random starting point. Is there a word for this kind of imitation process? What are some of the known methods?
How about Generative Adversarial Networks (GAN, Goodfellow 2014) and their more advanced siblings like Deep Convolutional Generative Adversarial Networks? There are plenty of proper research articles out there, and also more gentle introductions like this one on DCGAN and this on GAN. To quote the latter:
GANs are an interesting idea that were first introduced in 2014 by a
group of researchers at the University of Montreal lead by Ian
Goodfellow (now at OpenAI). The main idea behind a GAN is to have two
competing neural network models. One takes noise as input and
generates samples (and so is called the generator). The other model
(called the discriminator) receives samples from both the generator
and the training data, and has to be able to distinguish between the
two sources. These two networks play a continuous game, where the
generator is learning to produce more and more realistic samples, and
the discriminator is learning to get better and better at
distinguishing generated data from real data. These two networks are
trained simultaneously, and the hope is that the competition will
drive the generated samples to be indistinguishable from real data.
(DC)GAN should fit your task quite well.
I've recently been delving into artificial neural networks again, both evolved and trained. I had a question regarding what methods, if any, to solve for inputs that would result in a target output set. Is there a name for this? Everything I try to look for leads me to backpropagation which isn't necessarily what I need. In my search, the closest thing I've come to expressing my question is
Is it possible to run a neural network in reverse?
Which told me that there, indeed, would be many solutions for networks that had varying numbers of nodes for the layers and they would not be trivial to solve for. I had the idea of just marching toward an ideal set of inputs using the weights that have been established during learning. Does anyone else have experience doing something like this?
In order to elaborate:
Say you have a network with 401 input nodes which represents a 20x20 grayscale image and a bias, two hidden layers consisting of 100+25 nodes, as well as 6 output nodes representing a classification (symbols, roman numerals, etc).
After training a neural network so that it can classify with an acceptable error, I would like to run the network backwards. This would mean I would input a classification in the output that I would like to see, and the network would imagine a set of inputs that would result in the expected output. So for the roman numeral example, this could mean that I would request it to run the net in reverse for the symbol 'X' and it would generate an image that would resemble what the net thought an 'X' looked like. In this way, I could get a good idea of the features it learned to separate the classifications. I feel as it would be very beneficial in understanding how ANNs function and learn in the grand scheme of things.
For a simple feed-forward fully connected NN, it is possible to project hidden unit activation into pixel space by taking inverse of activation function (for example Logit for sigmoid units), dividing it by sum of incoming weights and then multiplying that value by weight of each pixel. That will give visualization of average pattern, recognized by this hidden unit. Summing up these patterns for each hidden unit will result in average pattern, that corresponds to this particular set of hidden unit activities.Same procedure can be in principle be applied to to project output activations into hidden unit activity patterns.
This is indeed useful for analyzing what features NN learned in image recognition. For more complex methods you can take a look at this paper (besides everything it contains examples of patterns that NN can learn).
You can not exactly run NN in reverse, because it does not remember all information from source image - only patterns that it learned to detect. So network cannot "imagine a set inputs". However, it possible to sample probability distribution (taking weight as probability of activation of each pixel) and produce a set of patterns that can be recognized by particular neuron.
I know that you can, and I am working on a solution now. I have some code on my github here for imagining the inputs of a neural network that classifies the handwritten digits of the MNIST dataset, but I don't think it is entirely correct. Right now, I simply take a trained network and my desired output and multiply backwards by the learned weights at each layer until I have a value for inputs. This is skipping over the activation function and may have some other errors, but I am getting pretty reasonable images out of it. For example, this is the result of the trained network imagining a 3: number 3
Yes, you can run a probabilistic NN in reverse to get it to 'imagine' inputs that would match an output it's been trained to categorise.
I highly recommend Geoffrey Hinton's coursera course on NN's here:
https://www.coursera.org/course/neuralnets
He demonstrates in his introductory video a NN imagining various "2"s that it would recognise having been trained to identify the numerals 0 through 9. It's very impressive!
I think it's basically doing exactly what you're looking to do.
Gruff
I'm relatively new to Matlab ANN Toolbox. I am training the NN with pattern recognition and target matrix of 3x8670 containing 1s and 0s, using one hidden layer, 40 neurons and the rest with default settings. When I get the simulated output for new set of inputs, then the values are around 0 and 1. I then arrange them in descending order and choose a fixed number(which is known to me) out of 8670 observations to be 1 and rest to be zero.
Every time I run the program, the first row of the simulated output always has close to 100% accuracy and the following rows dont exhibit the same kind of accuracy.
Is there a logical explanation in general? I understand that answering this query conclusively might require the understanding of program and problem, but its made of of several functions to clearly explain. Can I make some changes in the training to get consistence output?
If you have any suggestions please share it with me.
Thanks,
Nishant
Your problem statement is not clear for me. For example, what you mean by: "I then arrange them in descending order and choose a fixed number ..."
As I understand, you did not get appropriate output from your NN as compared to the real target. I mean, your output from NN is difference than target. If so, there are different possibilities which should be considered:
How do you divide training/test/validation sets for training phase? The most division should be assigned to training (around 75%) and rest for test/validation.
How is your training data set? Can it support most scenarios as you expected? If your trained data set is not somewhat similar to your test data sets (e.g., you have some new records/samples in the test data set which had not (near) appear in the training phase, it explains as 'outlier' and NN cannot work efficiently with these types of samples, so you need clustering approach not NN classification approach), your results from NN is out-of-range and NN cannot provide ideal accuracy as you need. NN is good for those data set training, where there is no very difference between training and test data sets. Otherwise, NN is not appropriate.
Sometimes you have an appropriate training data set, but the problem is training itself. In this condition, you need other types of NN, because feed-forward NNs such as MLP cannot work with compacted and not well-separated regions of data very well. You need strong function approximation such as RBF and SVM.
I would like to ask for ideas what options there is for training a MATLAB ANN (artificial neural network) continuously, i.e. not having a pre-prepared training set? The idea is to have an "online" data stream thus, when first creating the network it's completely untrained but as samples flow in the ANN is trained and converges.
The ANN will be used to classify a set of values and the implementation would visualize how the training of the ANN gets improved as samples flows through the system. I.e. each sample is used for training and then also evaluated by the ANN and the response is visualized.
The effect that I expect is that for the very first samples the response of the ANN will be more or less random but as the training progress the accuracy improves.
Any ideas are most welcome.
Regards, Ola
In MATLAB you can use the adapt function instead of train. You can do this incrementally (change weights every time you get a new piece of information) or you can do it every N-samples, batch-style.
This document gives an in-depth run-down on the different styles of training from the perspective of a time-series problem.
I'd really think about what you're trying to do here, because adaptive learning strategies can be difficult. I found that they like to flail all over compared to their batch counterparts. This was especially true in my case where I work with very noisy signals.
Are you sure that you need adaptive learning? You can't periodically re-train your NN? Or build one that generalizes well enough?
I'm trying to build an app to detect images which are advertisements from the webpages. Once I detect those I`ll not be allowing those to be displayed on the client side.
Basically I'm using Back-propagation algorithm to train the neural network using the dataset given here: http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements.
But in that dataset no. of attributes are very high. In fact one of the mentors of the project told me that If you train the Neural Network with that many attributes, it'll take lots of time to get trained. So is there a way to optimize the input dataset? Or I just have to use that many attributes?
1558 is actually a modest number of features/attributes. The # of instances(3279) is also small. The problem is not on the dataset side, but on the training algorithm side.
ANN is slow in training, I'd suggest you to use a logistic regression or svm. Both of them are very fast to train. Especially, svm has a lot of fast algorithms.
In this dataset, you are actually analyzing text, but not image. I think a linear family classifier, i.e. logistic regression or svm, is better for your job.
If you are using for production and you cannot use open source code. Logistic regression is very easy to implement compared to a good ANN and SVM.
If you decide to use logistic regression or SVM, I can future recommend some articles or source code for you to refer.
If you're actually using a backpropagation network with 1558 input nodes and only 3279 samples, then the training time is the least of your problems: Even if you have a very small network with only one hidden layer containing 10 neurons, you have 1558*10 weights between the input layer and the hidden layer. How can you expect to get a good estimate for 15580 degrees of freedom from only 3279 samples? (And that simple calculation doesn't even take the "curse of dimensionality" into account)
You have to analyze your data to find out how to optimize it. Try to understand your input data: Which (tuples of) features are (jointly) statistically significant? (use standard statistical methods for this) Are some features redundant? (Principal component analysis is a good stating point for this.) Don't expect the artificial neural network to do that work for you.
Also: remeber Duda&Hart's famous "no-free-lunch-theorem": No classification algorithm works for every problem. And for any classification algorithm X, there is a problem where flipping a coin leads to better results than X. If you take this into account, deciding what algorithm to use before analyzing your data might not be a smart idea. You might well have picked the algorithm that actually performs worse than blind guessing on your specific problem! (By the way: Duda&Hart&Storks's book about pattern classification is a great starting point to learn about this, if you haven't read it yet.)
aplly a seperate ANN for each category of features
for example
457 inputs 1 output for url terms ( ANN1 )
495 inputs 1 output for origurl ( ANN2 )
...
then train all of them
use another main ANN to join results