I would like to ask the following: I have a row vector, let’s say v, which is actually a bit sequence which length 400 comprised of the concatenation of 40 sequences of length 10 where each one is eiter an all-ones sequence (i.e. 1111111111) or an all-zeros sequence (i.e. 0000000000). That is, this vector is something like [0000000000111111111111111111110000000000111111111100000000000000000000.........].
Now I want from this vector to geneate a Continuous-Time waveform, that is, as long as the value is 0, the value will be ketp to zero, when it goes to 1, the value of the waveform will also go to one and so on.
Any thought how I could do that?
It was actually easier than what I was originally thinking. I just multiplied the vecot by 1. This did the job!
Related
I am currently trying to learn MATLAB independently and had a question about a command that used randn().
nddata = fix(8*randn(10,5,3))
I understand what the fix() function does, and the multi dimension array that is created by randn. However, I am not sure what 8 is doing here, it is not multiplying the outcome of the random numbers and it is not part of the limit. So I just want to know the purpose of the 8 here.
Thanks
randn generated a standard normally distributed matrix of random numbers (standard in this context is defined as mean = 0 and standard deviation = 1). The 8 factor simply stretches this distribution along the x-axis; a scalar multiplication for each value in the 3D matrix. The fix function then rounds each value to the nearest integer towards 0, i.e. -3.9 becomes -3.0. This effectively reduces the standard deviation of the data.
To see this for yourself, split the expression up and create temporary variables for each operation, and step through it with the debugger.
My computer uses 32 bits of resolution as default. I'm writing a script that involves taking measurements with a multimeter that has N bits of resolution. How do I convert the values to that?
For example, if I have a RNG that gives 1000 values
nums = randn(1,1000);
and I use an N-bit multimeter to read those values, how would I get the values to reflect that?
I currently have
meas = round(nums,N-1);
but it's giving me N digits, not N bits. The original random numbers are unbounded, but the resolution of the multimeter is the limitation; how to implement the limitation is what I'm looking for.
Edit I: I'm talking about the resolution of measurement, not the bounds of the numbers. The original values are unbounded. The accuracy of the measured values should be limited by the resolution.
Edit II: I revised the question to try to be a bit clearer.
randn doesn’t produce bounded numbers. Let’s say you are producing 32-bit integers instead:
mums = randi([0,2^32-1],1,n);
To drop the bottom 32-N bits, simply divide by an appropriate value and round (or take the floor):
nums = round(nums/(2^(32-N)));
Do note that we only use floating-point arithmetic here, numbers are integer-valued, but not actually integers. You can do a similar operation using actual integers if you need that.
Also, obviously, N should be lower than 32. You cannot invent new bits. If N is larger, the code above will add zero bits at the bottom of the number.
With a multimeter, it is likely that the range is something like -M V to M V with a a constant resolution, and you can configure the M selecting the range.
This is fixed point math. My answer will not use it because I don't have the toolbox available, if you have it you could use it to have simpler code.
You can generate the integer values with the intended resolution, then rescale it to the intended range.
F=2^N-1 %Maximum integer value
X=randi([0,F],100,1)
X*2*M/F-M %Rescale, divide by the integer range, multiply by the intended range. Then offset by intended minimum.
I'm looking for a function that will generate random values between 0 and 1, inclusive. I have generated 120,000 random values by using rand() function in octave, but haven't once got the values 0 or 1 as output. Does rand() ever produce such values? If not, is there any other function I can use to achieve the desired result?
If you read the documentation of rand in both Octave and MATLAB, it is an open interval between (0,1), so no, it shouldn't generate the numbers 0 or 1.
However, you can perhaps generate a set of random integers, then normalize the values so that they lie between [0,1]. So perhaps use something like randi (MATLAB docs, Octave docs) where it generates integer values from 1 up to a given maximum. With this, define this maximum number, then subtract by 1 and divide by this offset maximum to get values between [0,1] inclusive:
max_num = 10000; %// Define maximum number
N = 1000; %// Define size of vector
out = (randi(max_num, N, 1) - 1) / (max_num - 1); %// Output
If you want this to act more like rand but including 0 and 1, make the max_num variable quite large.
Mathematically, if you sample from a (continuous) uniform distribution on the closed interval [0 1], values 0 and 1 (or any value, in fact) have probability strictly zero.
Programmatically,
If you have a random generator that produces values of type double on the closed interval [0 1], the probability of getting the value 0, or 1, is not zero, but it's so small it can be neglected.
If the random generator produces values from the open interval (0, 1), the probability of getting a value 0, or 1, is strictly zero.
So the probability is either strictly zero or so small it can be neglected. Therefore, you shouldn't worry about that: in either case the probability is zero for practical purposes. Even if rand were of type (1) above, and thus could produce 0 and 1, it would produce them with probability so small that you would "never" see those values.
Does that sound strange? Well, that happens with any number. You "never" see rand ever outputting exactly 1/4, either. There are so many possible outputs, all of them equally likely, that the probability of any given output is virtually zero.
rand produces numbers from the open interval (0,1), which does not include 0 or 1, so you should never get those values.. This was more clearly documented in previous versions, but it's still stated in the help text for rand (type help rand rather than doc rand).
However, since it produces doubles, there are only a finite number of values that it will actually produce. The precise set varies depending on the RNG algorithm used. For Mersenne twister, the default algorithm, the possible values are all multiples of 2^(-53), within the open interval (0,1). (See doc RandStream.list, and then "Choosing a Random Number Generator" for info on other generators).
Note that 2^(-53) is eps/2. Therefore, it's equivalent to drawing from the closed interval [2^(-53), 1-2^(-53)], or [eps/2, 1-eps/2].
You can scale this interval to [0,1] by subtracting eps/2 and dividing by 1-eps. (Use format hex to display enough precision to check that at the bit level).
So x = (rand-eps/2)/(1-eps) should give you values on the closed interval [0,1].
But I should give a word of caution: they've put a lot of effort into making sure that output of rand gives an appropriate distribution of any given double within (0,1), and I don't think you're going to get the same nice properties on [0,1] if you apply the scaling I suggested. My knowledge of floating-point math and RNGs isn't up to explaining why, or what you might do about that.
I just tried this:
octave:1> max(rand(10000000,1))
ans = 1.00000
octave:2> min(rand(10000000,1))
ans = 3.3788e-08
Did not give me 0 strictly, so watch out for floating point operations.
Edit
Even though I said, watch out for floating point operations I did fall for that. As #eigenchris pointed out:
format long g
octave:1> a=max(rand(1000000,1))
a = 0.999999711020176
It yields a floating number close to one, not equal, as you can see now after changing the precision, as #rayryeng suggested.
Although not direct to the question here, I find it helpful to link to this SO post Octave - random generate number that has a one liner to generate 1s and 0s using r = rand > 0.5.
I'm just learning matlab and I have a snippet of code which I don't understand the syntax of. The x is an n x 1 vector.
Code is below
p = (min(x):(max(x)/300):max(x))';
The p vector is used a few lines later to plot the function
plot(p,pp*model,'r');
It generates an arithmetic progression.
An arithmetic progression is a sequence of numbers where the next number is equal to the previous number plus a constant. In an arithmetic progression, this constant must stay the same value.
In your code,
min(x) is the initial value of the sequence
max(x) / 300 is the increment amount
max(x) is the stopping criteria. When the result of incrementation exceeds this stopping criteria, no more items are generated for the sequence.
I cannot comment on this particular choice of initial value and increment amount, without seeing the surrounding code where it was used.
However, from a naive perspective, MATLAB has a linspace command which does something similar, but not exactly the same.
Certainly looks to me like an odd thing to be doing. Basically, it's creating a vector of values p that range from the smallest to the largest values of x, which is fine, but it's using steps between successive values of max(x)/300.
If min(x)=300 and max(x)=300.5 then this would only give 1 point for p.
On the other hand, if min(x)=-1000 and max(x)=0.3 then p would have thousands of elements.
In fact, it's even worse. If max(x) is negative, then you would get an error as p would start from min(x), some negative number below max(x), and then each element would be smaller than the last.
I think p must be used to create pp or model somehow as well so that the plot works, and without knowing how I can't suggest how to fix this, but I can't think of a good reason why it would be done like this. using linspace(min(x),max(x),300) or setting the step to (max(x)-min(x))/299 would make more sense to me.
This code examines an array named x, and finds its minimum value min(x) and its maximum value max(x). It takes the maximum value and divides it by the constant 300.
It doesn't explicitly name any variable, setting it equal to max(x)/300, but for the sake of explanation, I'm naming it "incr", short for increment.
And, it creates a vector named p. p looks something like this:
p = [min(x), min(x) + incr, min(x) + 2*incr, ..., min(x) + 299*incr, max(x)];
I need some help on how to generate odd random numbers using Matlab. How do you generate odd random numbers within a given interval, say between 1 and 100?
Well, if I could generate EVEN random numbers within an interval, then I'd just add 1. :)
That is not as silly as it sounds.
Can you generate random integers? If you could, why not multiply by 2? Then you would have EVEN random integers. See above for what to do next.
There are tools in MATLAB to generate random integers in an interval. If not, then you could write your own trivially enough. For example, what does this do:
r = 1 + 2*floor(rand(N,1)*50);
Or this:
r = 1 + 2*randi([0 49], N,1);
Note that Rody edited this answer, but made a mistake when he did so when using randi. I've corrected the problem. Note that randi intentionally goes up to only 49 in its sampling as I have changed it. That works because 2*49 + 1 = 99.
So how about in the rand case? Why have I multiplied by 50 there, and not 49? This is taken from the doc for rand:
"r = rand(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard uniform distribution on the open interval (0,1)."
So rand NEVER generates an exact 1. It can generate a number slightly smaller than 1, but never 1. So when I multiply by 50, this results in a number that is never exactly 50, but only potentially slightly less than 50. The floor then generates all integers between 0 and 49, with essentially equal probability. I suppose someone will point out that since 0 is never a possible result from rand, that the integer 0 will be under-sampled by this expression by an amount of the order of eps. If you will generate that many samples that you can see this extent of undersampling, then you will need a bigger, faster computer to do your work. :)