Generating sub-systems based on user input (MATLAB/SimMechanics) - matlab

The user in this webinar;
http://www.mathworks.com.au/videos/parameterizing-bodies-68850.html?form_seq=conf1134
can create new levels of links for the scissor lift by copy pasting the sub systems.
I was wondering if there was any way the number of subsystems and the joints could be automated via user input.
i.e a gui which allows the user to input the number of levels in the scissor lift and that number of levels (subsystems) is generated in SimMechanics.
If someone could provide a solution I could adapt it to the problem I'm trying to solve.
Thanks in advance!

Yes, you can automate it, as long as you know what susbsytems and what joints you want to add. The functions of interest are:
add_block(path_to_your_subsystem,path_to_destination_subsystem) (I assume your susbsystem is stored in a library). You probably want to specify the 'Position` parameter so that all blocks don't end up on top of each other. It will take some experimenting to find coordinates that work for your model and that are parameterised based on the number of susbystems to add.
add_line(path_to_subsystem_of_interest,path_to_output_port,path_to_input_port). You'll need to know which port you want to connect to which and figure out how many times you need to do this based on the number of subsystems to add. Simscape and SimMechanics are a special type of ports, and you need to refer to them correctly otherwise it won't work, see Programatically connect two subsystems for more details (note: this is undocumented as far as I know and is therefore likely to change in a future release).
So in short, yes it's possible (I've done it in the past), but it's by no means easy. See this blog for a very simple introduction.

Related

How to "flow" tagged values in Enterprise Architect from one instance to another

My questions is about bringing a concept to reality through technical availability of EA.
I am looking for a way to connect instances at an object diagram through which I can transfer tagged values. Let me explain the background of the project.
Purpose is to first have Stereotypes for specific roles in the system, such as "Calculation", "Transmission", "Decision", "Qualification", "Abstraction" etc.
Each of these stereotypes have specific tagged values suitable for their purpose.
Then I am creating instances from these stereotypes, eg. "MotorTorque:Calculation" and "LimitedTorque:Abstraction"
Each of these instances have a common tagged value, "criticality", boolean and I want this tagged value to progress from "MotorTorque:Calculation" to "LimitedTorque:Abstraction" through an output port > some sort of flow > input port kind of way.
Questions are:
1- Is this approach technically achievable in EA? If so what would be the correct way to do it?
2- The purpose is to have this "connection" readable in XMI export of the diagram which I will be using as an input for another purpose.
I have created an MDG Technology for my project with stereotypes and tagged values, however, I am having difficulty achieving this "connection", this "flow" of values.
Thank you for your time.
What you are asking for is not directly achievable. However, many ways lead to Rome.
One way would be to <<trace>> connect those objects to a Status class (or what ever you like to name it) and have this carry the "shared TV".
Another way is (by far more complex) to use an add-in. You would anyway need ways to create groups which share the TV. From your current explanation I can't see what that might be. Maybe the instantiating class of those instances? If so, you make a script that propagates a TV setting from ist current to all other linked instances. I'm not sure if the add-in events fire when a TV is changes (I do have some doubts here). If needed I could look that up.
What you propose is partially feasible.
There is a tagged value inheritance chain in EA, in which tagged values are inherited down the generalization chain, and from a classifier to its instances. In the GUI, inherited tagged values are shown separately from the instance's own ones, and in the API they are accessed using the Element.TaggedValuesEx property. Inherited tagged values can also be overridden.
Since the correct way to create a port (or part/property) is to make it an instance of a component, a port will inherit any tagged values from that component. So if your Calculation stereotype applies to component, ports which are instances of Calculation components will inherit the MotorTorque tagged value.
However, there is no way to "flow" tagged values from one port to another. If you want such a function, you'll have to implement it yourself with an Add-In.
Regarding XMI, first you must understand that an XMI export is based on a package, not a diagram. The XMI format itself is extensible, which means that different tool vendors create their own extensions which are typically not publicly documented. Crucially, diagram layouts are part of these non-standardized extensions. In EA's case, the image data is some sort of UU-encoded bitmap which you won't be able to extract any useful information from.
Elements' tagged values are included in an XMI export, but again, the EA extensions are not publicly documented. In other words, you can import EA:s XMI format in another program, but you will need to reverse-engineer the format. Not impossible, but it's probably better to either write your own specialized export function, or export via CSV. Note, however, that CSV export cannot be automated -- there's no call for it in the API.

How to implement deterministic single threaded network simulation

I read about how FoundationDB does its network testing/simulation here: http://www.slideshare.net/FoundationDB/deterministic-simulation-testing
I would like to implement something very similar, but cannot figure out how they actually did implement it. How would one go about writing, for example, a C++ class that does what they do. Is it possible to do the kind of simulation they do without doing any code generation (as they presumeably do)?
Also: How can a simulation be repeated, if it contains random events?? Each time the simulation would require to choose a new random value and thus be not the same run as the one before. Maybe I am missing something here...hope somebody can shed a bit of light on the matter.
You can find a little bit more detail in the talk that went along with those slides here: https://www.youtube.com/watch?v=4fFDFbi3toc
As for the determinism question, you're right that a simulation cannot be repeated exactly unless all possible sources of randomness and other non-determinism are carefully controlled. To that end:
(1) Generate all random numbers from a PRNG that you seed with a known value.
(2) Avoid any sort of branching or conditionals based on facts about the world which you don't control (e.g. the time of day, the load on the machine, etc.), or if you can't help that, then pseudo-randomly simulate those things too.
(3) Ensure that whatever mechanism you pick for concurrency has a mode in which it can guarantee a deterministic execution order.
Since it's easy to mess all those things up, you'll also want to have a way of checking whether determinism has been violated.
All of this is covered in greater detail in the talk that I linked above.
In the sims I've built the biggest issue with repeatability ends up being proper seed management (as per the previous answer). You want your simulations to give different results only when you supply a different seed to your random number generators than before.
After that the biggest issue I've seen seems tends to be making sure you don't iterate over collections with nondeterministic ordering. For instance, in Java, you'd use a LinkedHashMap instead of a HashMap.

consistent hashing on Multiple machines

I've read the article: http://n00tc0d3r.blogspot.com/ about the idea for consistent hashing, but I'm confused about the method on multiple machines.
The basic process is:
Insert
Hash an input long url into a single integer;
Locate a server on the ring and store the key--longUrl on the server;
Compute the shorten url using base conversion (from 10-base to 62-base) and return it to the user.(How does this step work? In a single machine, there is a auto-increased id to calculate for shorten url, but what is the value to calculate for shorten url on multiple machines? There is no auto-increased id.)
Retrieve
Convert the shorten url back to the key using base conversion (from 62-base to 10-base);
Locate the server containing that key and return the longUrl. (And how can we locate the server containing the key?)
I don't see any clear answer on that page for how the author intended it. I think this is basically an exercise for the reader. Here's some ideas:
Implement it as described, with hash-table style collision resolution. That is, when creating the URL, if it already matches something, deal with that in some way. Rehashing or arithmetic transformation (eg, add 1) are both possibilities. This means, naively, a theoretical worst case of having to hit a server n times trying to find an available key.
There's a lot of ways to take that basic idea and smarten it, eg, just search for another available key on the same server, eg, by rehashing iteratively until you find one that's on the server.
Allow servers to talk to each other, and coordinate on the autoincrement id.
This is probably not a great solution, but it might work well in some situations: give each server (or set of servers) separate namespace, eg, the first 16 bits selects a server. On creation, randomly choose one. Then you just need to figure out how you want that namespace to map. The namespaces only really matter for who is allowed to create what IDs, so if you want to add nodes or rebalance later, it is no big deal.
Let me know if you want more elaboration. I think there's a lot of ways that this one could go. It is annoying that the author didn't elaborate on this point; my experience with these sorts of algorithms is that collision resolution and similar problems tend to be at the very heart of a practical implementation of a distributed system.

Are Operational Transformation Frameworks only meant for text?

Looking at all the examples of Operational Transformation Frameworks out there, they all seem to resolve around the transformation of changes to plain text documents. How would an OT framework be used for more complex objects?
I'm wanting to dev a real-time sticky notes style app, where people can co-create sticky notes, change their positon and text value. Would I be right in assuming that the position values wouldn't be transformed? (I mean, how would they, you can't merge them right?). However, I would want to use an OT framework to resolve conflicts with the posit-its value, correct?
I do not see any problem to use Operational Transformation to work with Complex Objects, what you need is to define what operations your OT system support and how concurrency is solved for them
For instance, if you receive two Sticky notes "coordinates move operation" from two different users from same 'client state', you need to make both states to converge, probably cancelling out second operation.
This is exactly the same behaviour with text when two users generate two updates to delete a text range that overlaps completely, (or maybe partially), the second update processed must be transformed against the previous and the resultant operation will only effectively delete a portion of the original one, (or completely cancelled with a 'no-op')
You can take a look on this nice explanation about how Google Wave Operational Transformation works and guess from this point how it should work your own implementation
See the following paper for an approach to using OT with trees if you want to go down that route:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.74
However, in your particular case, I would use a separate plain text OT document for each stickynote and use an existing library, eg: etherPad, to do the heavy lifting. The positions of the notes could then be broadcast on a last-committer-wins basis.
Operation Transformation is a general technique, it works for any data type. The point is you need to define your transformation functions. Also, there are some atomic attributes that you cannot merge automatically like (position and background color) those will be mostly "last-update wins" or the user solves them manually when there is a conflict.
there are some nice libs and frameworks that provide OT for complex data already out there:
ShareJS : library for Node which provides all operations on JSON objects
DerbyJS: framework for NodeJS, it uses ShareJS for OT stuff.
Open Coweb framework : Dojo foundation project for cooperative web applications using OT

a simple/practical example of fuzzy c-means algorithm

I am writing my master thesis on the subject of dynamic keystroke authentication. To support ongoing research, I am writing code to test out different methods of feature extraction and feature matching.
My current simple approach just checks if the reference password keycodes matches the currently typed in keycodes and also checks if the keypress times (dwell) and the key-to-key times (flight) are the same as reference times +/- 100ms (tolerance). This is of course very limited and I want to extend it with some sort of fuzzy c-means pattern matching.
For each key the features look like: keycode, dwelltime, flighttime (first flighttime is always 0).
Obviously the keycodes can be taken out of the fuzzy algorithm because they have to be exactly the same.
In this context, how would a practical implementation of fuzzy c-means look like?
Generally, you would do the following:
Determine how many clusters you want (2? "Authentic" and "Fake"?)
Determine what elements you want to cluster (individual keystrokes? login attempts?)
Determine what your feature vectors will look like (dwell time, flight time?)
Determine what distance metric you will be using (how will you measure the distance of each sample from each cluster?)
Create exemplar training data for each cluster type (what does an authentic login look like?)
Run the FCM algorithm on the training data to generate the clusters
To create the membership vector for any given login attempt sample, run it through the FCM algorithm using the clusters you found in step 6
Use the resulting membership vector to determine (based on some threshold criteria) whether the login attempt is authentic
I'm not an expert, but this seems like an odd approach to determining whether a login attempt is authentic or not. I've seen FCM used for pattern recognition (eg. which facial expression am I making?), which makes sense because you're dealing with several categories (eg. happy, sad, angry, etc...) with defining characteristics. In your case, you really only have one category (authentic) with defining characteristics. Non-authentic keystrokes are simply "not like" authentic keystrokes, so they won't cluster.
Perhaps I am missing something?
I don't think you really want to do clustering here. You might want to do some proper fuzzy matching though instead of just allowing some delta on each value.
For clustering, you need to have many data points. Additionally, you'd need to know the proper number of means you need.
But what are these multiple objects meant to be? You have one data point for every keycode. You don't want to have the user type the password 100 times to see if he can do it consistently. And even then, what do you expect the clusters to be? You already know which keycode comes at which position, you don't want to find out what keycodes the user use for his password...
Sorry, I really don't see any clustering here. The term "fuzzy" seems to have mislead you to this clustering algorithm. Try "fuzzy logic" instead.