Closed. This question needs debugging details. It is not currently accepting answers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Closed 8 years ago.
Improve this question
can someone help me to solve this problem?
(define test1 '(c o 2 (h 2 o) 3 o 2))
(define test2 '(h 2 o))
(define test3 '(c o 2 o 2))
(atomic_count test1) returns 14
(atomic_count test2) returns 3
(atomic_count test3) returns 5
Not too hard, the main point is that you need some kind of buffer (called prev in my case) to wait for a possible multiplication:
(define (atomic_count lst)
(let loop ((lst lst) (prev 0))
(if (null? lst)
prev
(let ((elt (car lst)))
(cond
((list? elt) (+ prev (loop (cdr lst) (loop elt 0))))
((number? elt) (loop (cdr lst) (* prev elt)))
(else (+ prev (loop (cdr lst) 1))))))))
Testing:
> (atomic_count '(c o 2 (h 2 o) 3 o 2))
14
> (atomic_count '(h 2 o))
3
> (atomic_count '(c o 2 o 2))
5
Related
Trying to write a function that returns every third element in a list
including the first element in racket. All I get now is my code blowing up with a first: contract violation
expected: (and/c list? (not/c empty?))
given: 4
(define l (list 1 2 3 4 5 6 7 8 9))
(define (skipper lst)
(if (null? lst)
'()
(cons (first lst)
(skipper (car (cdr (cdr (cdr lst))))))))
(skipper l)
The problem was just the car around cdddr.
(define l (list 1 2 3 4 5 6 7 8 9))
(define (skipper lst)
(if (null? lst)
'()
(cons (first lst)
(skipper (if (< (length lst) 3)
'()
(cdddr lst))))))
(skipper l) ;; '(1 4 7)
Generalized Solution
(define (my-cdr lst) ;; `cdr` behaving like in common-lisp: (cdr '()) -> '()
(cond ((null? lst) '())
(else (cdr lst))))
(define (multi-cdr lst k) ;; apply `my-cdr` k-times on `lst`
(cond ((zero? k) lst)
(else (multi-cdr (my-cdr lst) (- k 1)))))
(define (skipper lst k)
(if (null? lst)
'()
(cons (first lst)
(skipper (multi-cdr lst k) k))))
Test it:
(skipper l 3) ;; '(1 4 7)
(skipper l 4) ;; '(1 5 9)
(skipper l 2) ;; '(1 3 5 7 9)
(skipper l 1) ;; '(1 2 3 4 5 6 7 8 9)
The issue is that you cannot call (cdr (cdr (cdr lst))) when lst has less than 3 elements.
You tagged this with racket, so I'm going to show you a solution using match
(define (skipper l)
(match l
;; some element and at least 3 more
((list a rest ..3)
(cons a (skipper (cddr rest))))
;; at least one element
((cons a _)
(list a))
;; otherwise
(else
empty)))
(skipper '())
;; '()
(skipper '(0))
;; '(0)
(skipper '(0 1 2 3 4 5 6 7))
;; '(0 3 6)
(skipper '(0 1 2 3 4 5 6 7 8 9))
;; '(0 3 6 9)
This solution doesn't use length which unnecessarily computes the length of the list
For example, '(1 2 3 4 5 6 7 8 9) would transform into '(123 456 789). I tried to find a recursive way of doing this but failed.
For example
(define (f lst)
(if (null? lst)
null
(cons (+ (* 100 (car lst))
(* 10 (cadr lst))
(caddr lst))
(f (cdddr lst)))))
I have this homework in LISP where I need to sort out atoms and then sublists from a list. I'm sure this is supposed to be easy task but as I'm not much of a programmer then this is really taking quite a while for me to understand.
I have this list of numbers:
(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6)
And if I understand correctly my task then I should get something like this:
(5 -1 -6 (2 6 1) (8 7 -3) (0 (9 4)))
So far all I found out is how to count atoms and/or sublists but I don't need that.
(DEFUN ATOMNUMBER (L) (COND ((NULL L) 0)
((ATOM (CAR L)) (+ 1 (ATOMNUMBER (CDR L))))
(T (ATOMNUMBER (CDR L))) ))
Also that function should work correctly even when there are only sublists, only atoms or just empty list.
Maybe someone can give me any examples?
Thanks in advance!
There are several possible approaches in Common Lisp:
use REMOVE-IF to remove the unwanted items. (Alternatively use REMOVE-IF-NOT to keep the wanted items.) You'll need two lists. Append them.
use DOLIST and iterate over the list, collect the items into two lists and append them
write a recursive procedure where you need to keep two result lists.
it should also be possible to use SORT with a special sort predicate.
Example:
> (sort '(1 (2 6 1) 4 (8 7 -3) 4 1 (0 (9 4)) -6 10 1)
(lambda (a b)
(atom a)))
(1 10 -6 1 4 4 1 (2 6 1) (8 7 -3) (0 (9 4)))
As stable version:
(stable-sort '(1 (2 6 1) 4 (8 7 -3) 4 1 (0 (9 4)) -6 10 1)
(lambda (a b)
(and (atom a)
(not (atom b)))))
(1 4 4 1 -6 10 1 (2 6 1) (8 7 -3) (0 (9 4)))
I am more used to Scheme but here's a solution that works in Lisp:
(defun f (lst)
(labels
((loop (lst atoms lists)
(cond
((null lst)
(append (reverse atoms) (reverse lists)))
((atom (car lst))
(loop (cdr lst) (cons (car lst) atoms) lists))
(T
(loop (cdr lst) atoms (cons (car lst) lists))))))
(loop lst '() '())))
(f '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6))
Basically you iterate over the list, and each element is either appended to the atoms list or the lists lists. In the end you join both to get your result.
EDIT
The remove-if version is way shorter, of course:
(let ((l '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6)))
(append
(remove-if-not #'atom l)
(remove-if #'atom l)))
Just in case you will want to exercise more, and you will find that the examples provided here are not enough :P
(defun sort-atoms-first-recursive (x &optional y)
(cond
((null x) y)
((consp (car x))
(sort-atoms-first-recursive (cdr x) (cons (car x) y)))
(t (cons (car x) (sort-atoms-first-recursive (cdr x) y)))))
(defun sort-atoms-first-loop (x)
(do ((a x (cdr a))
(b) (c) (d) (e))
(nil)
(if (consp (car a))
(if b (setf (cdr b) a b (cdr b)) (setf b a d a))
(if c (setf (cdr c) a c (cdr c)) (setf c a e a)))
(when (null (cdr a))
(cond
((null d) (return e))
((null c) (return d))
(t (setf (cdr b) nil (cdr c) d) (return e))))))
(sort-atoms-first-recursive '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6))
(sort-atoms-first-loop '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6))
The second one is destructive (but doesn't create any new conses).
Here's an iterative code, constructing its output in a top-down manner (the comment is in Haskell syntax):
;atomsFirst xs = separate xs id id where
; separate [] f g = f (g [])
; separate (x:xs) f g
; | atom x = separate xs (f.(x:)) g
; | True = separate xs f (g.(x:))
(defmacro app (l v)
`(progn (rplacd ,l (list ,v)) (setq ,l (cdr ,l))))
(defun atoms-first (xs)
(let* ((f (list nil)) (g (list nil)) (p f) (q g))
(dolist (x xs)
(if (atom x) (app p x) (app q x)))
(rplacd p (cdr g))
(cdr f)))
The two intermediate lists that are being constructed in a top-down manner are maintained as open-ended lists (i.e. with explicit ending pointer), essentially following the difference-lists paradigm.
You can do this recursive way:
(defun f (lst)
(cond
((null lst) nil)
((atom (car lst))
(append (list (car lst)) (f (cdr lst))))
(T
(append (f (cdr lst)) (list (f (car lst))))
)
)
)
(step (f '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6)))
Output:
step 1 --> (F '(5 -1 (2 6 1) (8 7 -3) ...))
step 1 ==> value: (5 -1 -6 (0 (9 4)) (8 7 -3) (2 6 1))
I have this homework in LISP where I need to sort out atoms and then sublists from a list. I'm sure this is supposed to be easy task but as I'm not much of a programmer then this is really taking quite a while for me to understand.
I have this list of numbers:
(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6)
And if I understand correctly my task then I should get something like this:
(5 -1 -6 (2 6 1) (8 7 -3) (0 (9 4)))
So far all I found out is how to count atoms and/or sublists but I don't need that.
(DEFUN ATOMNUMBER (L) (COND ((NULL L) 0)
((ATOM (CAR L)) (+ 1 (ATOMNUMBER (CDR L))))
(T (ATOMNUMBER (CDR L))) ))
Also that function should work correctly even when there are only sublists, only atoms or just empty list.
Maybe someone can give me any examples?
Thanks in advance!
There are several possible approaches in Common Lisp:
use REMOVE-IF to remove the unwanted items. (Alternatively use REMOVE-IF-NOT to keep the wanted items.) You'll need two lists. Append them.
use DOLIST and iterate over the list, collect the items into two lists and append them
write a recursive procedure where you need to keep two result lists.
it should also be possible to use SORT with a special sort predicate.
Example:
> (sort '(1 (2 6 1) 4 (8 7 -3) 4 1 (0 (9 4)) -6 10 1)
(lambda (a b)
(atom a)))
(1 10 -6 1 4 4 1 (2 6 1) (8 7 -3) (0 (9 4)))
As stable version:
(stable-sort '(1 (2 6 1) 4 (8 7 -3) 4 1 (0 (9 4)) -6 10 1)
(lambda (a b)
(and (atom a)
(not (atom b)))))
(1 4 4 1 -6 10 1 (2 6 1) (8 7 -3) (0 (9 4)))
I am more used to Scheme but here's a solution that works in Lisp:
(defun f (lst)
(labels
((loop (lst atoms lists)
(cond
((null lst)
(append (reverse atoms) (reverse lists)))
((atom (car lst))
(loop (cdr lst) (cons (car lst) atoms) lists))
(T
(loop (cdr lst) atoms (cons (car lst) lists))))))
(loop lst '() '())))
(f '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6))
Basically you iterate over the list, and each element is either appended to the atoms list or the lists lists. In the end you join both to get your result.
EDIT
The remove-if version is way shorter, of course:
(let ((l '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6)))
(append
(remove-if-not #'atom l)
(remove-if #'atom l)))
Just in case you will want to exercise more, and you will find that the examples provided here are not enough :P
(defun sort-atoms-first-recursive (x &optional y)
(cond
((null x) y)
((consp (car x))
(sort-atoms-first-recursive (cdr x) (cons (car x) y)))
(t (cons (car x) (sort-atoms-first-recursive (cdr x) y)))))
(defun sort-atoms-first-loop (x)
(do ((a x (cdr a))
(b) (c) (d) (e))
(nil)
(if (consp (car a))
(if b (setf (cdr b) a b (cdr b)) (setf b a d a))
(if c (setf (cdr c) a c (cdr c)) (setf c a e a)))
(when (null (cdr a))
(cond
((null d) (return e))
((null c) (return d))
(t (setf (cdr b) nil (cdr c) d) (return e))))))
(sort-atoms-first-recursive '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6))
(sort-atoms-first-loop '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6))
The second one is destructive (but doesn't create any new conses).
Here's an iterative code, constructing its output in a top-down manner (the comment is in Haskell syntax):
;atomsFirst xs = separate xs id id where
; separate [] f g = f (g [])
; separate (x:xs) f g
; | atom x = separate xs (f.(x:)) g
; | True = separate xs f (g.(x:))
(defmacro app (l v)
`(progn (rplacd ,l (list ,v)) (setq ,l (cdr ,l))))
(defun atoms-first (xs)
(let* ((f (list nil)) (g (list nil)) (p f) (q g))
(dolist (x xs)
(if (atom x) (app p x) (app q x)))
(rplacd p (cdr g))
(cdr f)))
The two intermediate lists that are being constructed in a top-down manner are maintained as open-ended lists (i.e. with explicit ending pointer), essentially following the difference-lists paradigm.
You can do this recursive way:
(defun f (lst)
(cond
((null lst) nil)
((atom (car lst))
(append (list (car lst)) (f (cdr lst))))
(T
(append (f (cdr lst)) (list (f (car lst))))
)
)
)
(step (f '(5 -1 (2 6 1) (8 7 -3) (0 (9 4)) -6)))
Output:
step 1 --> (F '(5 -1 (2 6 1) (8 7 -3) ...))
step 1 ==> value: (5 -1 -6 (0 (9 4)) (8 7 -3) (2 6 1))
Given a list, how would I select a new list, containing a slice of the original list (Given offset and number of elements) ?
EDIT:
Good suggestions so far. Isn't there something specified in one of the SRFI's? This appears to be a very fundamental thing, so I'm surprised that I need to implement it in user-land.
Strangely, slice is not provided with SRFI-1 but you can make it shorter by using SRFI-1's take and drop:
(define (slice l offset n)
(take (drop l offset) n))
I thought that one of the extensions I've used with Scheme, like the PLT Scheme library or Swindle, would have this built-in, but it doesn't seem to be the case. It's not even defined in the new R6RS libraries.
The following code will do what you want:
(define get-n-items
(lambda (lst num)
(if (> num 0)
(cons (car lst) (get-n-items (cdr lst) (- num 1)))
'()))) ;'
(define slice
(lambda (lst start count)
(if (> start 1)
(slice (cdr lst) (- start 1) count)
(get-n-items lst count))))
Example:
> (define l '(2 3 4 5 6 7 8 9)) ;'
()
> l
(2 3 4 5 6 7 8 9)
> (slice l 2 4)
(3 4 5 6)
>
You can try this function:
subseq sequence start &optional end
The start parameter is your offset. The end parameter can be easily turned into the number of elements to grab by simply adding start + number-of-elements.
A small bonus is that subseq works on all sequences, this includes not only lists but also string and vectors.
Edit: It seems that not all lisp implementations have subseq, though it will do the job just fine if you have it.
(define (sublist list start number)
(cond ((> start 0) (sublist (cdr list) (- start 1) number))
((> number 0) (cons (car list)
(sublist (cdr list) 0 (- number 1))))
(else '())))
Try something like this:
(define (slice l offset length)
(if (null? l)
l
(if (> offset 0)
(slice (cdr l) (- offset 1) length)
(if (> length 0)
(cons (car l) (slice (cdr l) 0 (- length 1)))
'()))))
Here's my implementation of slice that uses a proper tail call
(define (slice a b xs (ys null))
(cond ((> a 0) (slice (- a 1) b (cdr xs) ys))
((> b 0) (slice a (- b 1) (cdr xs) (cons (car xs) ys)))
(else (reverse ys))))
(slice 0 3 '(A B C D E F G)) ;=> '(A B C)
(slice 2 4 '(A B C D E F G)) ;=> '(C D E F)