I'm trying to create a map which goes through all the ngrams in a document and counts how often they appear. Ngrams are sets of n consecutive words in a sentence (so in the last sentence, (Ngrams, are) is a 2-gram, (are, sets) is the next 2-gram, and so on). I already have code that creates a document from a file and parses it into sentences. I also have a function to count the ngrams in a sentence, ngramsInSentence, which returns Seq[Ngram].
I'm getting stuck syntactically on how to create my counts map. I am iterating through all the ngrams in the document in the for loop, but don't know how to map the ngrams to the count of how often they occur. I'm fairly new to Scala and the syntax is evading me, although I'm clear conceptually on what I need!
def getNGramCounts(document: Document, n: Int): Counts = {
for (sentence <- document.sentences; ngram <- nGramsInSentence(sentence,n))
//I need code here to map ngram -> count how many times ngram appears in document
}
The type Counts above, as well as Ngram, are defined as:
type Counts = Map[NGram, Double]
type NGram = Seq[String]
Does anyone know the syntax to map the ngrams from the for loop to a count of how often they occur? Please let me know if you'd like more details on the problem.
If I'm correctly interpreting your code, this is a fairly common task.
def getNGramCounts(document: Document, n: Int): Counts = {
val allNGrams: Seq[NGram] = for {
sentence <- document.sentences
ngram <- nGramsInSentence(sentence, n)
} yield ngram
allNgrams.groupBy(identity).mapValues(_.size.toDouble)
}
The allNGrams variable collects a list of all the NGrams appearing in the document.
You should eventually turn to Streams if the document is big and you can't hold the whole sequence in memory.
The following groupBycreates a Map[NGram, List[NGram]] which groups your values by its identity (the argument to the method defines the criteria for "aggregate identification") and groups the corresponding values in a list.
You then only need to map the values (the List[NGram]) to its size to get how many recurring values there were of each NGram.
I took for granted that:
NGram has the expected correct implementation of equals + hashcode
document.sentences returns a Seq[...]. If not you should expect allNGrams to be of the corresponding collection type.
UPDATED based on the comments
I wrongly assumed that the groupBy(_) would shortcut the input value. Use the identity function instead.
I converted the count to a Double
Appreciate the help - I have the correct code now using the suggestions above. The following returns the desired result:
def getNGramCounts(document: Document, n: Int): Counts = {
val allNGrams: Seq[NGram] = (for(sentence <- document.sentences;
ngram <- ngramsInSentence(sentence,n))
yield ngram)
allNGrams.groupBy(l => l).map(t => (t._1, t._2.length.toDouble))
}
Related
I currently have a value of result that is a string which represents cycles in a graph
> scala result
String =
0:0->52->22;
5:5->70->77;
8:8->66->24;8->42->32;
. //
. // trimmed to get by point across
. //
71:71->40->45;
77:77->34->28;77->5->70;
84:84->22->29
However, I want to have the output have the numbers in between be included and up to a certain value included. The example code would have value = 90
0:0->52->22;
1:
2:
3:
4:
5:5->70->77;
6:
7:
8:8->66->24;8->42->32;
. //
. // trimmed
. //
83:
84:84->22->29;
85:
86:
87:
88:
89:
90:
If it helps or makes any difference, this value is changed to a list for later purposes, such like
list_result = result.split("\n").toList
List[String] = List(0:0->52->22;, 5:5->70->77;, 8:8->66->24;8->42->32;, 11:11->26->66;11->17->66;
My initial thought was to insert the missing numbers into the list and then sort it, but I had trouble with the sorting so I instead look here for a better method.
Turn your list_result into a Map with default values. Then walk through the desired number range, exchanging each for its Map value.
val map_result: Map[String,List[String]] =
list_result.groupBy("\\d+:".r.findFirstIn(_).getOrElse("bad"))
.withDefault(List(_))
val full_result: String =
(0 to 90).flatMap(n => map_result(s"$n:")).mkString("\n")
Here's a Scastie session to see it in action.
One option would be to use a Map as an intermediate data structure:
val l: List[String] = List("0:0->52->22;", "5:5->70->77;", "8:8->66->24;8->42->32;", "11:11->26->66;11->17->66;")
val byKey: List[Array[String]] = l.map(_.split(":"))
val stop = 90
val mapOfValues = (1 to stop).map(_->"").toMap
val output = byKey.foldLeft(mapOfValues)((acc, nxt) => acc + (nxt.head.toInt -> nxt.tail.head))
output.toList.sorted.map {case (key, value) => println(s"$key, $value")}
This will give you the output you are after. It breaks your input strings into pseudo key-value pairs, creates a map to hold the results, inserts the elements of byKey into the map, then returns a sorted list of the results.
Note: If you are using this in anything like production code you'd need to properly check that each Array in byKey does have two elements to prevent any nullPointerExceptions with the later calls to head and tail.head.
The provided solutions are fine, but I would like to suggest one that can process the data lazily and doesn't need to keep all data in memory at once.
It uses a nice function called unfold, which allows to "unfold" a collection from a starting state, up to a point where you deem the collection to be over (docs).
It's not perfectly polished but I hope it may help:
def readLines(s: String): Iterator[String] =
util.Using.resource(io.Source.fromString(s))(_.getLines)
def emptyLines(from: Int, until: Int): Iterator[(String)] =
Iterator.range(from, until).map(n => s"$n:")
def indexOf(line: String): Int =
Integer.parseInt(line.substring(0, line.indexOf(':')))
def withDefaults(from: Int, to: Int, it: Iterator[String]): Iterator[String] = {
Iterator.unfold((from, it)) { case (n, lines) =>
if (lines.hasNext) {
val next = lines.next()
val i = indexOf(next)
Some((emptyLines(n, i) ++ Iterator.single(next), (i + 1, lines)))
} else if (n < to) {
Some((emptyLines(n, to + 1), (to, lines)))
} else {
None
}
}.flatten
}
You can see this in action here on Scastie.
What unfold does is start from a state (in this case, the line number from and the iterator with the lines) and at every iteration:
if there are still elements in the iterator it gets the next item, identifies its index and returns:
as the next item an Iterator with empty lines up to the latest line number followed by the actual line
e.g. when 5 is reached the empty lines between 1 and 4 are emitted, terminated by the line starting with 5
as the next state, the index of the line after the last in the emitted item and the iterator itself (which, being stateful, is consumed by the repeated calls to unfold at each iteration)
e.g. after processing 5, the next state is 6 and the iterator
if there are no elements in the iterator anymore but the to index has not been reached, it emits another Iterator with the remaining items to be printed (in your example, those after 84)
if both conditions are false we don't need to emit anything anymore and we can close the "unfolding" collection, signalling this by returning a None instead of Some[(Item, State)]
This returns an Iterator[Iterator[String]] where every nested iterator is a range of values from one line to the next, with the default empty lines "sandwiched" in between. The call to flatten turns it into the desired result.
I used an Iterator to make sure that only the essential state is kept in memory at any time and only when it's actually used.
I am fairly new to Scala and Spark RDD programming. The dataset I am working with is a CSV file containing list of movies (one row per movie) and their associated user ratings (comma delimited list of ratings). Each column in the CSV represents a distinct user and what rating he/she gave the movie. Thus, user 1's ratings for each movie are represented in the 2nd column from the left:
Sample Input:
Spiderman,1,2,,3,3
Dr.Sleep, 4,4,,,1
I am getting the following error:
Task4.scala:18: error: not enough arguments for method count: (p: ((Int, Int)) => Boolean)Int.
Unspecified value parameter p.
var moviePairCounts = movieRatings.reduce((movieRating1, movieRating2) => (movieRating1, movieRating2, movieRating1._2.intersect(movieRating2._2).count()
when I execute the few lines below. For the program below, the second line of code splits all values delimited by "," and produces this:
( Spiderman, [[1,0],[2,1],[-1,2],[3,3],[3,4]] )
( Dr.Sleep, [[4,0],[4,1],[-1,2],[-1,3],[1,4]] )
On the third line, taking the count() throws an error. For each movie (row), I am trying to get the number of common elements. In the above example, [-1, 2] is clearly a common element shared by both Spiderman and Dr.Sleep.
val textFile = sc.textFile(args(0))
var movieRatings = textFile.map(line => line.split(","))
.map(movingRatingList => (movingRatingList(0), movingRatingList.drop(1)
.map(ranking => if (ranking.isEmpty) -1 else ranking.toInt).zipWithIndex));
var moviePairCounts = movieRatings.reduce((movieRating1, movieRating2) => (movieRating1, movieRating2, movieRating1._2.intersect(movieRating2._2).count() )).saveAsTextFile(args(1));
My target output of line 3 is as follows:
( Spiderman, Dr.Sleep, 1 ) --> Between these 2 movies, there is 1 common entry.
Can somebody please advise ?
To get the number of elements in a collection, use length or size. count() returns number of elements which satisfy some additional condition.
Or you could avoid building the complete intersection by using count to count the elements of the first collection which the second contains:
movieRating1._2.count(movieRating2._2.contains(_))
The error message seems pretty clear: count takes one argument, but in your call, you are passing an empty argument list, i.e. zero arguments. You need to pass one argument to count.
I have a CSV file that represent a map[String,Int], then I am reading the file as follows:
def convI2N (vkey:Int):String={
val in = new Scanner("dictionaryNV.csv")
loop.breakable{
while (in.hasNext) {
val nodekey = in.next(',')
val value = in.next('\n')
if (value == vkey.toString){
n=nodekey
loop.break()}
}}
in.close
n
}
the function give the String given the Int. The problem here is that I must browse the whole file, and the file is to big, then the procedure is too slow. Someone tell me that this is O(n) complexity time, and recomend me to pass to O(log n). I suppose that the function map.getOrElse is O(log n).
Someone can help me to find a way to get a best performance of this code?
As additional comment, the dictionaryNV file is sorted by the Int values
maybe I can divide the file by lines, or set of lines. The CSV has like 167000 Tuples [String,Int]
or in another way how you make some kind of binary search through the csv in scala?
If you are calling confI2N function many times then definitely the job will be slow because each time you have to scan the big file. So if the function is called many times then it is recommended to store them in temporary variable as properties or hashmap or collection of tuple2 and change the other code that is eating the memory.
You can try following way which should be faster than scanner way
Assuming that your csv file is comma separated as
key1,value1
key2,value2
Using Source.fromFile can be your solution as
def convI2N (vkey:Int):String={
var n = "not found"
val filtered = Source.fromFile("<your path to dictionaryNV.csv>")
.getLines()
.map(line => line.split(","))
.filter(sline => sline(0).equalsIgnoreCase(vkey.toString))
for(str <- filtered){
n = str(0)
}
n
}
3 tuples in a list
val l = List(("a","b"),("c","d"),("e","f"))
choice one element from each tuple then return this 3 letters word every time
for example: fca or afd or cbf ...
how to realize it
the same as:
echo {a,b}{c,d}{e,f}|xargs -n1|shuf -n1|sed 's/\B/\n/g'|shuf|paste -sd ''
Working with tuples can be a bit of a pain. You can't easily index them and tuples of different sizes are considered different types in the type system.
val ts = List(("a","b"),("c","d"),("e","f"))
val str = ts.map{t =>
t.productElement(util.Random.nextInt(t.productArity))
}.mkString("")
Every time I run this I get a different result: bde, acf, bdf, etc.
I have the following code snippets: The code reads the system (Linux) dictionary(en) file and keeps it in memory List.
Code 1 : (With mutable List)
val word = scala.collection.mutable.LinkedList[String]("init");
for(line <- Source.fromFile("/usr/share/dict/words").getLines()){
val s : String = line.trim()
if( // some checks
){
word append scala.collection.mutable.LinkedList[String](s)
}
}
Code 2 : (With Immutable List)
var word = List[String]()
for(line <- Source.fromFile("/usr/share/dict/words").getLines()){
val s : String = line.trim()
if( // some checks
){
word ::= s
}
}
Code 2 : returns almost immediately , But
Code 1 : Takes for ever .
Can any one help me out , why is it taking so much time for mutable List? . Should we use Mutable at all or Am I doing something wrong?
Scala version used : 2.10.3
Thanks in Advance for your help.
word append scala.collection.mutable.LinkedList[String](s)
Traverse the word list and then at the end append the items from the other list.
word ::= s
Append s at the front of the word list and assign the new list to word variable.
Appending to the end of list is always expensive as compared to add a item to the front.
In the first example, you are adding to the end of a list repeatedly (append). This takes time on the order of the length of the list. In the second example, you are adding to the beginning of a list (::). This takes constant time. So the first example has an execution time that increases with the square of the number of lines in the file, and the second has an execution time that increases linearly with the length of the file.
This is due to the nature of linked lists, which are the data structure underlying both immutable List and mutable LinkedList. linked lists are fast to access at the front and slow to access at the back.